
Renegotiating TLS

Marsh Ray
Steve Dispensa
PhoneFactor, Inc.

v1.1 November 4, 2009

Summary

Transport Layer Security (TLS, RFC 5246 and previous, including SSL v3 and previous) 
is subject to a number of serious man-in-the-middle (MITM) attacks related to 
renegotiation. In general, these problems allow an MITM to inject an arbitrary amount of 
chosen plaintext into the beginning of the application protocol stream, leading to a 
variety of abuse possibilities. In particular, practical attacks against HTTPS client 
certificate authentication have been demonstrated against recent versions of both 
Microsoft IIS and Apache httpd on a variety of platforms and in conjunction with a 
variety of client applications. Cases not involving client certificates have been 
demonstrated as well. Although this research has focused on the implications 
specifically for HTTP as the application protocol, the research is ongoing and many of 
these attacks are expected to generalize well to other protocols layered on TLS.

There are three general attacks against HTTPS discussed here, each with slightly 
different characteristics, all of which yield the same result: the attacker is able to 
execute an HTTP transaction of his choice, authenticated by a legitimate user (the 
victim of the MITM attack). Some attacks result in the attacker-supplied request 
generating a response document which is then presented to the client without any 
certificate warning or other indication to the user. Other techniques allow the attacker to 
forward or re-purpose client certificate authentication credentials.

Technology Background

TLS is a widely used protocol, but there are a number of features (standardized and 
otherwise) that are inconsistently implemented and used. Following is a brief summary 
of TLS negotiation, and an explanation of two relevant features of the protocol.

Basic TLS begins negotiation with a Client Hello message sent by the client to the 
server, including the list of supported cipher suites. The server responds with a Server 
Hello, selecting an appropriate TLS version and cipher suite to use in the initial TLS 
session. The server also responds with its certificate, and finishes with a Server Hello 
Done. The client then establishes an encryption key, each side sends a Change Cipher 
Spec message to activate encryption, and each sends a Finished request to its peer. 



There are a number of variations on this theme, but this is the common case.

At this point, bi-directional encryption has been negotiated, and future messages 
(including control messages) are encrypted between the peers.

The standard permits either end to request renegotiation of the TLS session at any time. 
The ostensible reason for this is to allow either end to decide that it would like to refresh 
its cryptographic keys, increase the level of authentication, increase the strength of the 
cipher suite in use, or for any other reason. For the client to trigger a renegotiation, it is 
sufficient for it to send a new Client Hello message (in the encrypted channel, like 
any other handshaking message). The server responds with a Server Hello, and 
negotiation goes exactly as above. The server may also initiate a renegotiation by 
sending to the client a Hello Request message. The client then simply sends a new 
Client Hello, exactly as above, and the process goes as usual.

Each TLS negotiation results in an established TLS session with an assigned Session 
ID. TLS allows for session resumption, wherein the client specifies a Session ID from a 
previous session. Session resumption can save the server time and CPU by obviating 
the need to do a full cryptographic initialization (together with its attendant 
computational costs). It is important to note that session resumption seems to have 
been designed as an optimization, not as a security-related feature of the system.

Specific Problems

Scenario: Client certificate authentication

HTTPS servers which can be configured to provide client certificate authentication 
generally allow it to be configured on a per-directory basis. (It appears that Microsoft IIS 
defaults to this configuration. At the time of this writing, it can only be changed through a 
manual metabase edit.) This implies that the server cannot insist that the client provide 
a valid certificate until it has received the request from the client and filtered it through 
its authentication rules.

For requests that are found to require client certificate authentication, the HTTPS server 
must then renegotiate the TLS channel to obtain and validate the certificate from the 
client. If the the certificate is found to be valid the server is then obligated to process the 
request.

Unfortunately, because HTTP lacks a specific response code to instruct the client to 
resubmit the request within the newly authenticated channel, the server must apply the 
authentication retroactively to the original request. Even though there is no gap in the 
encryption (negotiation of the new keys is conducted under the protection of the old), 
there is a loss of continuity in the authentication of the server to the client. This 
"authentication gap" is the central weakness exploited by these attacks.

In the absence of session resumption, there is no significant cryptographic state carried 



over from the initial client connection to the renegotiated session. None of the HTTPS 
clients or servers tested were observed to conduct session resumption during 
renegotiation (much less require it, as IT is an optional part of the protocol). In fact, 
resumption is designed purely as an optimization for resuming a previous cryptographic 
context, whereas renegotiation is designed to begin a new cryptographic context. In that 
sense, the two operations were designed for orthogonal purposes.

This attack has been demonstrated against recent versions of Apache httpd and 
Microsoft IIS, with a variety of clients.

Scenario: Differing server cryptographic requirements

HTTPS servers that host resources with varying cipher suite requirements may be 
vulnerable to another renegotiation attack. Because of the variations in the level of 
cipher suite strength, the web server has to be willing to negotiate TLS at the most basic 
encryption level supported on the server. Only after having seen the URL requested by 
the client can the server accurately determine which cipher suites will be acceptable.

If the current cipher suite is not one of the required cipher suites, the server must 
request a renegotiation and agree on new parameters. The act of soliciting client 
renegotiation triggers the same weakness as in the case of client certificates: the server 
is forced to replay the buffered request, which in this case includes the chosen plaintext 
of the attacker.

Of course, the attack depends on tricking the client into authenticating the transaction 
requested by the MITM. One way this can be done is via “request splicing”, i.e., having 
the man-in-the-middle splice two requests onto the beginning of the client's intended 
communication. The first is a request to any (perhaps unrelated) resource that triggers 
renegotiation, and the second request is the injected attack, ending with a custom 
“ignore” header prefix (lacking line termination). This ignore header causes the first 
request line from the client, the HTTP request line, to be effectively “commented out” by 
the ignore header, and therefore ignored by the server. The remaining headers are 
automatically spliced onto the attacking request, including any Cookie or other 
authentication/authorization headers sent by the original client. This has the effect of 
authorizing the attacker's request. The researchers suspect that most forms of HTTP 
authentication are susceptible.

One way to make this attack work in practice is to leverage the HTTP 1.1 pipelining and 
keep-alive facilities. This allows the attacker to submit both requests in a single 
segment, ahead of the triggered renegotiation. An example MITM-generated request 
buffer looks like this:

char *req = 
"GET /highsecurity/index.html HTTP/1.1\r\n"
"Host: example.com\r\n"
"Connection: keep-alive\r\n"
"\r\n"



"GET /evil/doEvil.php?evilStuff=here HTTP/1.1\r\n"
"Host: example.com\r\n"
"Connection: close\r\n"
"X-ignore-what-comes-next: ";

The client then completes the second request with his own request:

char *originalRequest =
"GET /good.html HTTP/1.1\r\n"
"Cookie: AuthMe=Now\r\n"
"\r\n";

The net effect looks like this to the server:

GET /highsecurity/index.html HTTP/1.1
Host: example.com
Connection: keep-alive

GET /evil/do.php?evilStuff=here HTTP/1.1
Host: example.com
Connection: close
X-ignore-what-comes-next: GET /index.html HTTP/1.1
Cookie: AuthMe=Now
...

Scenario: Client-initiated renegotiation

TLS equally allows the client side of the connection to initiate a renegotiation. This case 
is perhaps more attractive to the attacker because he does not need to elicit a Hello 
Request from the server, so no particular server-side configuration is required for this 
attack to succeed.

In the HTTPS domain, a practical attack involves the MITM splicing an initial request 
with an un-terminated HTTP “ignore” header onto the beginning of the client's intended 
request, again stealing whatever authentication or authorization information provided. 
Note that this does not require pipelining or HTTP keep-alive. In all other respects, the 
server sees the same sort of request buffer as above.

This attack has been tested and found to work against a current Apache. See the 
appendix for an illustrative trace.

Implications

The theoretical impact of this issue is potentially significant. To the extent that a 
compliant implementation of TLS allows an attacker to inject arbitrary plaintext into an 
authenticated session, it violates a core assumption made by application developers 
and protocol designers.



Most existing installations which currently rely on client certificates for authentication 
appear to be vulnerable. 

Shared hosting environments which allow untrusted customers served from the same IP 
to configure any aspect of their encryption parameters appear to be vulnerable.

Most or all server applications built on TLS implementations which honor client-initiated 
renegotiation are vulnerable.

Mitigation

There seem to be few silver bullets to address these issues. Generally, they seem to 
have arisen due to incomplete or vague specifications of the interactions between TLS 
and application protocols (particularly HTTP), and sometimes because there were 
simply no alternatives.

Mitigation of the HTTPS client certificate attacks is difficult and involves tradeoffs. One 
possible solution is to require client certificate presentation immediately, before the 
presentation of the HTTP request to the server. While perhaps feasible, the 
implementation of this feature by common web server software is inconsistent - while 
the certificate may be prompted for, the client may in some cases simply refuse to 
respond with a valid certificate. In those cases, the server may fall back to the 
vulnerable behavior. This change also has the side effect of transmitting the client 
certificate chain in the clear, whereas previously it was protected within the first 
encrypted session.

From a broader perspective, though, that strategy has problems. For one thing, web 
servers often host content with varying certificate authentication requirements. One 
subdirectory might be the "secure" area of the site, requiring client certificate 
authentication, while another area may be an "anonymous" area such as a landing 
page. Simply requiring every visitor to the site to supply a valid client certificate may be 
impossible, since it completely prevents public viewing of the site. Even presenting 
visitors with the option of supplying client certificate authentication for every visit to the 
site is likely to be unacceptable from an user interaction perspective. One scenario for 
mitigation involves web developers reorganizing their sites to strictly separate areas of 
each site into zones based on their differing requirements for authentication, with zones 
being served from distinct IP addresses. One can imagine the high costs of such a 
transition, although there are ways to partially or fully automate this separation.

Other mitigations involve protocol changes, but again, they generally have their own 
issues. In some cases, compatibility with old client software is broken completely. For 
example, the server could require session ID resumption across renegotiations, but that 
would represent a breaking protocol change and introduce an incompatibility with most, 
if not all, current client software. It is unclear whether resumption is even technically 
allowed (by the current standard) during renegotiation and in practice it has not been 



observed by the researchers.

The right long-term solution to the renegotiation problem involves a much more careful 
binding between TLS and upper protocol layers. This could be handled in a variety of 
ways, including breaking and backwards-compatible changes.

Cipher suite upgrade attacks can be minimized in a few ways. One obvious way is to 
require all content on a site to use a single cipher suite. Disallowing specification of TLS 
parameters in .htaccess files (generally modifiable by end users) may also be a good 
idea.

Clients need to be improved to take into account the things learned during this research. 
For one thing, browsers' behavior of allowing automatic certificate sending is suspect 
and should be reconsidered. Secondly, browsers suffer from a fundamental inability to 
authenticate the specific transaction the server is about to execute, ostensibly on behalf 
of the client. That underlying problem should be addressed, and will likely involve either 
a protocol change or changes in the way existing protocols are implemented.

Finally, it may make sense to require clients to authenticate servers using the supplied 
certificate before handing client certificates back to the server. This will effectively 
prevent the chosen-server attack scenarios described above. This may also represent a 
breaking protocol change, however, and is being investigated.

Next Steps

During the process of investigating these issues, the researchers ran across a number 
of additional areas that merit further work. Judging from recent experience, it is 
anticipated that the problem domain will continue to evolve in the coming weeks.

Development continues on effective exploitation techniques for some of the more 
difficult cases. These cases include refinements to the request splicing technique 
described above to better accommodate POST requests authenticated by HTTP 
headers. 

Early research suggests that digital certificates embedded on smart cards are equally 
vulnerable to the client certificate authentication attacks. The researchers hypothesize 
that the fact that the certificate is embedded on a smart card offers no protection for 
these weaknesses at the protocol level.

Another promising area of investigation is cross-protocol exploitation. An exploit 
scenario might go like this: client (victim) opens his web browser, which automatically 
requests his homepage via HTTP. MITM edits the response to embed an invisible 
image linked to the https site to be attacked. The client browser then makes a request to 
the chosen site, the MITM intercepts it, and the attack proceeds as above. Aiding the 
attack are common client browser settings allowing the browser to provide client 
certificates silently in cases where there appears to be a reasonable default choice. This 



would lead to a virtually automatic exploitation of an unsuspecting end user. Because 
any server can be compromised simply by a well-meaning user navigating to that 
server, this could be used by the operator of a hostile network as a way to attack a 
server on a remote network (all without the user's knowledge).

TLS includes a 64-bit sequence number which begins at zero and increments with every 
transmitted record. Implementations are required to perform a renegotiation before it is 
allowed to wrap. Although this is unlikely to be a practical attack, one can imagine that 
some implementations of TLS may renegotiate well in advance of approaching this limit. 
In any case, the ability of an attacker to trigger renegotiation via this mechanism would 
have similar consequences to those described above.

Acknowledgments

We would like to thank Frank Heidt of Leviathan Security for initial peer review, for 
helping us to understand the scope and severity of the issues, and for providing advice 
on how to most appropriately conduct the disclosure process.

We also thank Ben Laurie of Google and the OpenSSL core team for his valuable 
consultation and peer review during this process.

Finally, we express our gratitude to Steve Manzuik and ICASI for providing a framework 
within which to disclose responsibly to an initial set of affected vendors.

Appendix: client-initiated renegotiation support in Apache 2.2.3

Following is output from OpenSSL's s_client test program, pointed to a stock Debian 
Apache 2.2.3 server. Note the line with the single “R” initiates a renegotiation, and the 
following line RENEGOTIATING was emitted by the s_client program to indicate that a 
renegotiation was in process. Note also that it successfully occurs before the HTTP 
headers are terminated. After the renegotiation is complete, the final newline is sent, 
causing the response to be sent.

Plato:~ dispensa$ openssl s_client -connect dispensas.com:443 
-cipher EXP-RC4-MD5
CONNECTED(00000003)
...(certificate verification process trimmed)...
GET / http/1.0
X-ignore-me: GET /
R
RENEGOTIATING
...(certificate verification process trimmed)...
read R BLOCK
HTTP/1.1 200 OK
Date: Wed, 23 Sep 2009 14:23:07 GMT



Server: Apache/2.2.3 (Debian) PHP/5.2.0-8+etch15 mod_ssl/2.2.3 
OpenSSL/0.9.8c
Last-Modified: Mon, 21 Sep 2009 00:24:57 GMT
ETag: "33ecf-54-4740b82eee840"
Accept-Ranges: bytes
Content-Length: 84
Connection: close
Content-Type: text/html; charset=UTF-8

<html><head><title>It Worked!</title></head><body><h1>It Worked!
</h1></body></html>
closed
Plato:~ dispensa$

The client-initiated attack appears to work between a wget client and OpenSSL's 
simple web server:


