Eftective’ fite format fuzzing

Thoughts, techniques-and yesults

al 6Sdzal a2nnNXz¢ WdzNDOIT & |
Black Hat Europe 2016, London

PS>whoami

AProject Zero @ Google

A Part time developer and frequent user of the fuzzing infrastructure.

ADragon Sector CTF team vice captain.

ALowlevel security researcher with interest in all sorts of vulnerability
research and software exploitation.

Ahttp://jOOru.vexillium.org/
A@j0Oru

http://j00ru.vexillium.org/
http://twitter.com/j00ru

Agenda

AWhat constitutes realife offensive fuzzing (technigues and mindset).

AHow each of the stages is typically implemented and how to improve
them for maximized effectiveness.
ACALIE 3 GNRO1& 2y GKS SEIFYLX Sa 2F &z
years:Adobe ReadAdobe FladNindows Kery@racle JavdexRays IDA Pro

FreeTypeRFmpegdfiumWireshadk X

Fuzzing

Fuzz testingr fuzzingis a software testing technique, often
automated or semautomated, that involves providing
invalid, unexpected, or random data to the inputs of a

computer program.

http://en.wikipedia.org/wiki/Fuzz_testing

Lo Yoy (Yi@thisOak'yRe U KA A G f 1

ASoftware commonly used programs and libraries, both open and clssedce,

written in native languages (C/C++ etc.), which may be used as targets for

memory corruptionstyle Gday attacks.

AlnputS: files of different (un)documented formats processed by the target

software (e.g. websites, applets, images, videos, documents etc.).

On asscheme

save input

v

mutate input

v

feed to target

es
target

» chooseinput |[€—

Easyit@dearm)hardiioimaster.

Keycquestions

A How do we choose the fuzzing target in the first place?

A How are the inputs generated?

A What is the base set of the input samples? Where do we get it from?

A How do we mutate the inputs?

A How do we detect software failures / crashes?

As52 6S YI1S Fyed RSOAaA2ya AY TFdzidzNB Fdd 1 Ay3 o6 as
A How do we minimize the interesting inputs / mutations?

A How do we recognizeniquebugs?

A What if the software requires user interaction and/or displays windows?

A What if the application keeps crashing at a single location due to an easily reachable bug?

A What if the fuzzed file format includes checksums, other consistency checks, compression or encryption?

Gathermg-aninitialccorpus ofiinput-files

A A desired step in a majority of cases:
A Makes it possible to reach some code paths and program states immediately after starting the
fuzzing.

A May contain complex data structures which would be difficult or impossible to generate
organicallyusing just code coverage information, e.g. magic values, correct headers, compression
trees etc.

A Even if the same inputs could be constructed during fuzzing with an empty seed, having them
right at the beginning saves a lot of CPU time.

A Corpora containing files in specific formats may be frequently reused to fuzz various software
projects which handle them.

Gathering inputs:ithet standard-methods

A Opensource projects often include extensive sets of input data for testing, which can be freely
reused as a fuzzing starting point.

A ExampleFFmpedrATEsamples.ffmpeg.orgots of formats there, which would be otherwise very difficult to

obtain in the wild.
A{2YSUAYSa GKS@QNB y2i0 LlzotAOte FBFAflIo6fS FT2NJ SOSN
someone willing to report bugs in return.

A Many of them also include converters from format X to their own format Y. With a diverse set of
files in format X and/or diverse conversion options, this can also generate a decent corpus.

A Examplecwebp, a converter from PNG/JPEG/TIFF to WEBP images.

samples.ffmpeg.org

Gathering inputs:internet crawling

ADepending on the popularity of the fuzzed file format, Internet crawling is
the most intuitive approach.
A Download files with a specific file extension.

A Download files with specific magic bytes or other signatures.

Alf the format is indeed popular (e.g. DOC, PDF, SWF etc.), you may end up
with many terabytes of data on your disk.

A Not a huge problem, since storage is cheap, and the corpus can be later minimized to
consume less space while providing equivalent code coverage.

Yourmay: alsosaskwhat-the program thinks

AThings can get a bit dire if you plan to fuzz a program which supports
dozens of different formats.

ACode coverage analysis is of course a good idea, but it tends to slow down the

process considerably (esp. for clossmlirce software).

AlIn some cases, you can use the target itself to tell you if a given file can be

handled by it or not.

ACase studyiDA RPro

IDAPro supported formats(partial list)

MS DOS, EXE File, MS DOS COM File, MS DOS Driver, New Executable (NE), Linear Executable (LX), Linear
Executable (LE), Portable Executable (PE) (x86, x64, ARM), Windows CE PE3ABMNL, SHPS)MachOfor

OS X and iOS (x86, x64, ARM and PrR@)kExecutable (DEX), EPOC (Symbian OS executable), Windows Crash
Dump (DMP), XBOX Executable (XBE), Intel Hex Object File, MOS Technology Hex Object File, Netware Loadz
Module (NLM), Common Object File Format (COFF), Binary File, Object Module Format (OMF), OMF library, S
record format, ZIP archive, JAR archive, Executable and Linkable Formalv@itdinDOS32 Extender

(W32RUN), Linux.out (AOUT)PalmPilotprogram file, ADar library (AIAFF), PEF (Mac OS or Be OS

executable), QNX 16 and-Bis, Nintendo (N64), SNES ROM file (SMC), Motorola DSP56000 .LOD, Sony
PlaystationPSX executable files, objepsyg files, library gsyg files

rﬁ Load a new file u
Load file C:\test.exe as
|Portable executable for 80386 (PE) [pe.ldw]
M5-D05 executable (EXE) [dos.ldw] 1
Binary file
Processor type
[MEEF‘C (disassemble all opcodes) [metapc] -] Set
Analysis
Loading segment | 0x00000000 [Kernel options 1] [Kernel options 2]
Enabled
Loading offset | 0x00000000 Indicator enabled [Processor options]
Options
Loading options [] Load resources
Fill segment gaps Rename DLL entries
Create segments [] Manual load
|:| Create FLAT group Create imports segment
Load as code seament
| [concel ||

How does it work?

IDAProdoaderrarchitecture

AModular design, with each loader (also disassembler) residing in a separate
module, exporting two functionsiccept_file andload file

A One file for the 3ait version of IDA ix on Linux) and one file for &dit (.11x64).

$ Is loaders

aif64.1lx64 coff64.11x64 epoc.lix javaldr64.11x64 nlm64.11x64 pilot.lIx snes_spc.lIx
aif.llx coff.lIx expload64.11x64 javaldr.llx nim.lIx psx64.11x64 uimage.py
amiga64.l1x64 dex64.11x64 expload.llx Ix64.1Ix64 omf64.11x64 psx.lIx w32run64.1Ix64
amiga.llx dex.lIx geos64.11x64 IX.11x omf.lIx gnx64.11x64 w32run.lIx
aof64.lIx64 dos64.11x64 geos.lIx macho64.l1x64 0s964.11x64 gnx.lix wince.py
aof.lIx dos.lIx hex64.11x64 macho.llx 0s9.1Ix rt1164.11x64 xbe64.11x64

aout64.lIx64 dsp_lod.py hex.lIx mas64.l1x64 pdfldr.py rt11.lIx xbe.lIx
aout.llx dump64.1ix64 hppacore.idc mas.lIx pe64.lIx64 sbn64.11x64

bfitldr.py dump.llx hpsom64.11x64 n6464.1Ix64 pef64.lix64 sbn.lIx

bios image.py elf64.1Ix64 hpsom.lIx n64.l1x pef.lIx snes64.l1x64

bochsrc64.11x64 elf.llx intelomf64.11x64 ne64.11x64 pe.lIx snes.lIx

bochsrc.lIx epoc64.11x64 intelomf.llx ne.llx pilot64.11x64 snes_spc64.11x64

IDAProdoaderrarchitecture

int (idaapi * accept file)(linput t *Ili ,
char fileformathame [MAX FILE_FORMAT_NAME
int n);

void (idaapi * load file)(linput t *Ii |

ushort neflags ,
const char *fileformatname);

A Theaccept_file function performs preliminary processing and returns 0 or 1 depending on whether the

given module thinks it can handle the input file dsd its supported formats.

A If so, returns the name of the format in ttigeformatname argument.
A load_file performs the regular processing of the file.

A Both functions (and many more required to interact with IDA) are documented in the IDA SDK.

Easy towrite: arnolDAdoader entmerator

$./ accept_file accept_file
[+] 35 loaders found.

[-] 0s9.1Ix: format not recognized.

[-] mas.lIx : format not recognized.
[-] pe.llx :format not recognized.
[-] intelomf.lIx : format not recognized.
[-] macho.llx : format not recognized.
[-] ne.llx :format not recognized.
[-] epoc.llx :format not recognized.
[-] pef.llx :format not recognized.
[-] gnx.llx : format not recognized.
A

[-] amiga.llx : format not recognized.
[-] pilot.lIx : format not recognized.
[-] aof.llx : format not recognized.
[-] javaldr.llx : format not recognized.
[-] n64.1Ix: format not recognized.

[-] aif.llx : format not recognized.
[-] coff.llx : format not recognized.
[

+] elfllx : accept_file recognized as "ELF for Intel 386 (Executable)"

Asking the progranvfor feedback

AThanks to the design, we can determine if a file can be loaded in IDA:
Awith a very high degree of confidence.
A exactly by which loader, and treated as which file format.
A without ever starting IDA, or even requiring any of its files other than the loaders.
A without using any instrumentation, which together with the previous point speeds
things up significantly.
ASimilar techniques could be used for any software which makes it possible
to run some preliminary validation instead of fully fledged processing.

Conpusddistiliation

Aln fuzzing, it is important to get rid of most of the redundancy in the input corpus.

A Both the base one and tH&ingone evolving during fuzzing.

A In the context of a single test case, the following should be maximized:

i€ Qi dawdQhasgi QQ
Q¢ nioQa Q

which strives for the highest byt®-programfeature ratio: each portion of a file should

exercise a new functionality, instead of repeating constructs found elsewhere in the sample.

Conpusddistiliation

ALikewise, in the whole corpus, the following should be generally maximized:

‘‘‘‘‘

SQ¢ nidwa N Qi

CKAAd Syadz2NBa GKFIG GKSNB FNBYyQlu G422 YI
functionality (enforces program state diversity while keeping the corpus size

relatively low).

Format-specificccorpus minimization

AIf there is too much data to thoroughly process, and the format is easy to parse and
recognize (nof)interesting parts, you can do some cursory filtering to extract unusual
samples or remove dull ones.

A Many formats are structured into chunks with unique identifiers: SWF, PDF, PNG, JPEG, TTF, OTF
etc.

A Such generic parsing may already reveal if a file will be a promising fuzzing candidate or not.
ACKS RSSLISNI Ay(d2 0KS aLIS0as 0KS-effsdiw® gasbeydd A &
the general file structure, given other (better) methods of corpus distillation.

A Be careful not to reduce out interesting samples which only appear to be boring at first glance.

How tto define:gprogram stat@

AFile sizes and cardinality (from the previous expressions) are trivial to
measure.

wn

At KSNB R2SayQi SEA 3 progiamzidetesdspecially Yvith
the following characteristics:

A their number should stay within a sane range, e.g. counting all combinations of every
bit in memory cleared/set is not an option.

A they should be meaningful in the context of memory safety.

A they should be easily/quickly determined during process run time.

0 €1/ Q04 ENAQE QI WDE O Qi

A Most approximations are currently based on measuring code coverage, and not the
actual memory state.

A Pros:

A Increased code coverage is representative of new program states. In fuzzing, the more tested code is executed,
the higher chance for a bug to be found.

A The sane range requirement is met: code coverage information is typically linear in size in relation to the overall
program size.

A Easily measurable using both compiiedand external instrumentation.

A Cons:

A Constant code coverage does not indicate consg@nit ¢ "Qii ® ab® Asignificant amount of information on
distinct states may be lost when only using this metric.

Currentsstatenofithe art:ccounting: basic blocks

A Basic blocks provide the best granularity.

—— A Smallest coherent units of execution.

; Attributes: bp-based frame

A Measuring just functions loses lots of information on
; int __cdgcl main{int argc, const char =xxargu, const char =xenup)

H
public _main

_main proc near

what goes on inside.
Str= dword ptr -186h

argc= dword ptr &
argv= dword ptr BCh
enup= dword ptr 16h

A Recording specific instructions is generally redundant,

ebp, esp

a sy, EeEET since all of them are guaranteed to execute within the
e, same basic block.
= ' — WEE '] _
B e | SIS A Supported in both compilegtovetc.) and

P | external instrumentations (Intel PibynamoRI}

loc_4B13EE:
mov ax, B
leave

- A ldentified by the address of the first instruction.

Basicoblocks: incomplete dinformation

[l e =

; Attributes: bp-based frame
. . . H uu%d __cdecl_fuu(int a, int b}
void foo (int a, int b) { P 2araail proc near

|f (a —— 42 || b p— 1337) { a= dword ptr 8

b= dword ptr BCh

1 " n .
printf (" Success! ") ; push enp
mov ebp, esp
sub esp, 18h
} cmp [ebp+a], 42
jz short loc_u4813D5

}
ol sl =
cmp [ebp+b], 1337
VOid bar () { jnz short locret_4O13E1

vy

foo (0, 1337); e

fOO (42, O) ; ;35_431333;rd ptr [ESP],;D;iS::gEEEEEI:CESS
call _printf
foo (0, 0); T
} [l e 5=

locret_4813E1:
leave
retn
__23foo0ii endp

Basicoblocks: incomplete dinformation

void foo (int
if (a
printf
}

a, int b) {
42 || b == 1337) {
(" Success! ") ;

}

void bar() {
foo (0, 1337); <————
foo (42, 0);
foo (0, 0);

LH
Lh
LH
L
L
L
L
.
L
L
"
"
"
"
LR
.
L

}

M=

; httributes: bp-based frame

; void cdecl foo{int a, int b)
public _ Z3fooii
__Z23fooii proc near

a= dword ptr 8
b= dword ptr BCh

push ebp
mou ebp, esp
cub esp, 18h
cmp [ebp+a], 42
jz short loc_4813D5
PP L "
........... e o
cmp [ebp+b], 1337
jnz short locret_4813E1
b ooooon000! bnnenee PPy .
Yy
FIFE
199_#01305: ; "Succescst”
mou e, | duord ptr [esp], offset aSuccess
call printf

locret_4813E1:
leave
retn
__ 23fFoo0ii endp

Basicoblocks: incomplete dinformation

void foo (int
if (a
printf
}

a, int b) {
42 || b == 1337) {
(" Success! ") ;

}

void bar() {

new path

M=

; httributes: bp-based frame

; void cdecl foo{int a, int b)
public _ Z3fooii
__Z23fooii proc near

a= dword ptr 8
b= dword ptr BCh

push ebp

mou ebp, esp
cub esp, 18h
cmp [ebp+a], 42
jz

short loc_4813D5

il et 5
> cmp
jnz

'

[ebp+b], 1337
short locret_u4813E1

¥y

foo (0, 1337); W =
fOO (42, O) ; _ ;gz_umagi;rd ptr [ESP],;D;iggEEEEE:CESS
call _printf

foo (0, 0);
}

‘3
[[5=]

locret_4813E1:
leave
retn
__ 23fFoo0ii endp

]

. . . ; uu@d __cdecl_fnn(int a, int b)
void foo (int a, int b) { e
|f (a —— 42 || b —— 1337) { a= dword ptr 8

b= dword ptr BCh

1 n n .
printf (" Success! ") ; YE
mou ebp, esp
cub esp, 18h
} cmp [ebp+a], 42
} jz short loc_4813D5

'

’%@ [ebp+b], 1337
VOId bar () { | jnz Shu.rf:.l.ucret_lm13E1
foo (0, 1337); "= -
foo (42, 0); Loc_401305: <. New path

mou dword ptr [esp], offset aSuccess

foo (O’ O) , h call _printf -
} H=E

locret_4813E1:
leave
retn
__ 23fFoo0ii endp

