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Abstract

We analyze the generation and management of 802.11
group keys. These keys protect broadcast and multicast
Wi-Fi traffic. We discovered several issues and illustrate
their importance by decrypting all group (and unicast)
traffic of a typical Wi-Fi network.

First we argue that the 802.11 random number gen-
erator is flawed by design, and provides an insufficient
amount of entropy. This is confirmed by predicting ran-
domly generated group keys on several platforms. We
then examine whether group keys are securely transmit-
ted to clients. Here we discover a downgrade attack that
forces usage of RC4 to encrypt the group key when trans-
mitted in the 4-way handshake. The per-message RC4
key is the concatenation of a public 16-byte initialization
vector with a secret 16-byte key, and the first 256 key-
stream bytes are dropped. We study this peculiar usage
of RC4, and find that capturing 231 handshakes can be
sufficient to recover (i.e., decrypt) a 128-bit group key.
We also examine whether group traffic is properly iso-
lated from unicast traffic. We find that this is not the case,
and show that the group key can be used to inject and de-
crypt unicast traffic. Finally, we propose and study a new
random number generator tailored for 802.11 platforms.

1 Introduction

In the last decennia, Wi-Fi became a de facto standard for
medium-range wireless communications. Not only is it
widely supported, several new enhancements also make
it increasingly more performant. One downside is that
(encrypted) traffic can easily be intercepted. As a result,
securing Wi-Fi traffic has received considerable attention
from the research community. For example, they showed
that WEP is utterly broken [11, 42, 4], demonstrated at-
tacks against WPA-TKIP [43, 45, 47, 41], performed se-
curity analysis of AES-CCMP [24, 39, 13], studied the
security of the 4-way handshake [17, 18, 34], and so on.

However, most research only focuses on the security of
pairwise keys and unicast traffic. Group keys and group
traffic have been given less attention, if mentioned at all.

In this paper we show that generating and managing
group keys is a critical, but underappreciated part, of a
modern Wi-Fi network. In particular we investigate the
generation of group keys, their transmission to clients,
and the isolation between group and unicast traffic. We
discovered issues during all these phases of a group key’s
lifetime. To address some of our findings, we propose
and implement a novel random number generator that ex-
tracts randomness from the physical Wi-Fi channel.

First we study the random number generator proposed
by the 802.11 standard. Among other things, the Access
Point (AP) uses it to generate group keys. Surprisingly,
we find that it is flawed by design. We argue that im-
plementing the algorithm as specified, results in an un-
acceptably slow algorithm. This argument is supported
empirically: all implementations we examined, modified
the generator to increase its speed. We demonstrate that
these modified implementations can be broken by pre-
dicting the generated group key within mere minutes.

The generated group keys are transferred to clients
during the 4-way WPA2 handshake. We found that it is
possible to perform a (type of) downgrade attack against
the 4-way handshake, causing RC4 to be used to encrypt
the transmission of the group key. We analyze the con-
struction of the per-message RC4 key and its effect on
biases in the keystream. This reveals that an attacker can
abuse biases to recover an 128-bit group key by capturing
230 to 232 encryptions of the group key, where the precise
number depends on the configuration of the network.

Group keys should only be used to protect broadcast
or multicast frames. In other words, pairwise and group
keys should be properly isolated, and unicast packets
should never be encrypted with a group key. An AP can
enforce this by only sending, but never receiving, group
addressed frames. However, all APs we tested did not
provide this isolation. We demonstrate that this allows



FC addr1 addr2 addr3 KeyID / PN Data

Figure 1: Simplified 802.11 frame with a WPA2 header.

an attacker to use the group key to inject, and in turn de-
crypt, any traffic sent in a Wi-Fi network.

Finally, we propose and study a novel random num-
ber generation tailored for 802.11 platforms. It extracts
randomness from the wireless channel by collecting fine-
grained Received Signal Strength Indicator (RSSI) mea-
surements. These measurements can be made using com-
modity devices even if there is no background traffic. We
show our algorithm can generate more than 3000 bits per
second, and even when an adversary can predict individ-
ual RSSI measurements with high probability, the output
of the generator still remains close to uniformly random.

To summarize, our main contributions are:

• We show that the 802.11 random number genera-
tor is flawed, and break several implementations by
predicting its output, and hence also the group key.

• We present a downgrade-style attack against the
4-way handshake, allowing one to recover the group
key by exploiting weaknesses in the RC4 cipher.

• We show that the group key can be used to inject and
decrypt any (internet) traffic in a Wi-Fi network.

• We propose and study a random number generator
that extracts randomness from the wireless channel.

The rest of this paper is organized as follows. Sec-
tion 2 introduces relevant parts of the 802.11 standard.
We break the random number generator of 802.11 in Sec-
tion 3. Section 4 presents a downgrade attack against the
4-way handshake, and attacks on its usage of RC4. In
Section 5 we use the group key to inject and decrypt any
frames, including unicast ones. In Section 6 we propose
a new random number generator. Finally, we explore re-
lated work in Section 7, and conclude in Section 8.

2 Background

This section provides a background on the 802.11 proto-
col, the 4-way handshake, and the RC4 stream cipher.

2.1 The 802.11 Protocol
When a station wishes to transmit data, it needs to add a
valid 802.11 header (see Figure 1). This headers contains
the necessary MAC addresses to route the frame:

addr1 = Receiver MAC address
addr2 = Sender MAC address
addr3 = Destination MAC address

Client Access Point

Beacons: IEs containing supported ciphers

Select cipher

Association Request: IE with chosen cipher

Msg1: ANonce

PTK Msg2: SNonce, IE, MIC

PTK
verify IEMsg3: IEs, GTK, MIC

verify IEs Msg4: ACK, MIC

Figure 2: Discovering APs by listening to beacons, fol-
lowed by the association and 4-way WPA2 handshake.

The Access Point (AP) forwards received frames to their
destination, which is either a node on the wired network,
or a Wi-Fi client. In frames received by a client, addr1
should equal addr3, hence no further routing is required.
For example, when a client sends an outbound IP packet,
addr1 equals the address of the AP, addr2 contains his
own address, and addr3 equals the address of the router.

If a client wishes to transmit a broadcast or multicast
frame, i.e., a group addressed frame, he first sends it as a
unicast frame to the AP. This means addr1 equals the
address of the AP, and addr3 equals the broadcast or
multicast destination address. The AP then encrypts the
frame using the group key if needed, and broadcasts it to
all associated clients. This assures all clients within the
range of the AP will receive the frame, even if certain
stations are not within range of each other.

The Frame Control (FC) field contains, among other
things, the ToDS and FromDS flags. The ToDS flag is set
if the frame is sent from a client to an AP, and the FromDS
flag is set if the frame is sent in the reverse direction. The
fifth field in Figure 1 is only included when encryption is
used, and contains the Key ID and Packet Number (PN).
The PN prevents replay attacks. The 2-bit Key ID field is
only used in group addressed frames, where it identifies
which group key is used to protect and encrypt the frame.

2.2 Discovering APs and Negotiating Keys
Clients can discover APs by listening for beacons, which
are periodically broadcasted by the AP (see Figure 2).
These beacons contain the supported cipher suites of the
AP in Information Elements (IEs). When a client wants
to connect to an AP, and has selected a cipher to use, it
starts by sending an association request to the AP. This
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Figure 3: Simplified layout of EAPOL-Key frames.

request includes the selected cipher in an information el-
ement (IE). To prevent downgrade attacks, the client and
AP will verify the received and selected IEs in the 4-way
handshake. In this handshake, the client and AP also au-
thenticate each other, and negotiate a Pairwise Temporal
Key (PTK). The PTK is essentially the set of negotiated
session keys. The first part of the PTK is called the Key
Confirmation Key (KCK), and is used to authenticate
handshake messages. The second part is called the Key
Encryption Key (KEK), and is used to encrypt any sen-
sitive data in the handshake messages. Finally, the third
part is called the Temporal Key (TK), and is used to pro-
tect data frames that are transmitted after the handshake.
To assure a new PTK is generated, both the client and
AP first generate unpredictable, random nonces called
SNonce and ANonce, respectively. The PTK is then de-
rived from a shared secret or passphrase, the ANonce and
SNonce, and the MAC addresses of the client and AP.

In the first message of the 4-way handshake, the AP
sends the ANonce to the client (see Figure 2). On re-
ceipt of this message, the client calculates the PTK. In
the second message, the client sends the SNonce, the
IE representing the previously selected cipher, and in-
cludes a Message Integrity Code (MIC) calculated over
the complete message. Note that the MIC is calculated
using the KCK key contained in the PTK. After receiving
Msg2 and the SNonce, the AP also derives the PTK. At
this point both parties know the PTK, and all messages
are authenticated using a MIC. Using the KCK and re-
ceived MIC, the AP verifies the integrity of Msg2. The
AP then checks whether the included IE matches the IE
that was received in the initial association request. If
these IEs differ, the handshake is aborted. Otherwise the
AP replies with the Group Temporal Key (GTK), and its
supported ciphers as a list of IEs. The client verifies the
integrity of Msg3, and compares the included IEs with
the ones previously received in the beacons. If the IEs
differ, the handshake is aborted. Otherwise the client fin-
ishes the handshake by sending Msg4 to the AP.

Messages in the 4-way handshake are defined using
EAPOL-Key frames, whose most important fields are
shown in Figure 3. The Key Info field contains flags
identifying which message this frame represents in the
handshake. It also states which algorithm is used to cal-
culate the MIC, and which cipher is used to encrypt the
Key Data field (see Section 4). Note that the KCK key
is used to calculate the MIC, and that the KEK key is
used to encrypt the Key Data field. Finally, the Key IV

Key Scheduling (KSA)
L = len(key)

j, S = 0, range(256)

for i in range(256):

j += S[i] + key[i % L]

swap(S[i], S[j])

return S

Keystream Output (PRGA)
S, i, j = KSA(key), 0, 0

while True:

i += 1

j += S[i]

swap(S[i], S[j])

yield S[S[i] + S[j]]

Figure 4: Implementation of RC4 in Python-like pseudo-
code. All additions are carried out modulo 256.

field may contain an initialization vector (IV) to assure
the Key Data field is always encrypted using a unique
key. The most common usage of the Key Data field is to
transport the group key (GTK), and to transfer any IEs.

2.3 The RC4 Stream Cipher
RC4 is a fast and well-known stream cipher consisting
of two algorithms: a Key Scheduling Algorithm (KSA)
and a Pseudo-Random Generation Algorithm (PRGA).
Both are shown in Figure 4. The KSA takes as input a
variable-length key, and generates a permutation S of the
set {0, . . . ,255}. This gradually changing permutation,
combined with a public counter i and a private index j,
form the internal state of the PRGA. In each algorithm, a
swap operation is performed near the end of every round.
We use the notations it , jt , and St , for the indices i and j
and the permutation S after round t. Rounds are indexed
based on the value of i after the swap operation. Hence
the KSA has rounds t = 0, . . . ,255 and the PRGA has
rounds t = 1,2, . . .. We let Zr denote the keystream byte
outputted at round r. Whenever it might not be clear
whether we are referring to the KSA or PRGA, we use
the notations SKSA

t and SPRGA
t , respectively.

Multiple biases have been found in the first few key-
stream bytes of RC4. These are called short-term biases.
Arguably the most well known was found by Mantin and
Shamir [30]. They showed that the value zero occurs
twice as often at position 2 compared to uniform. In con-
trast, there are also biases that keep occurring throughout
the whole keystream. We call these long-term biases. For
example, Fluhrer and McGrew (FM) found that the prob-
ability of certain consecutive bytes deviate from uniform
throughout the whole keystream [12]. Similarly, Mantin
discovered a long-term bias towards the pattern ABSAB,
where A and B represent byte values, and S a short se-
quence of bytes called the gap [29]. Letting g denote the
length of the gap, the bias can be written as follows:

Pr[Zr,Zr+1 =Zr+g+2,Zr+g+3] = 2−16

(
1+

e(−4−8g)/256

256

)
Hence the longer the gap, the weaker the bias.



Listing 1: Random number generator as proposed by the
802.11 standard in Python-like pseudocode [21, §M.5].

1 def PRF-256(key, label, data):

2 R = HMAC-SHA1(key, label + "\x00" + data + "\x00")

3 R += HMAC-SHA1(key, label + "\x00" + data + "\x01")

4 return R[:32]

5

6 def Hash(data):

7 return PRF-256(0, "Init Counter", data)

8

9 def NetworkJitter():

10 if ethernet traffic available:

11 return LSB(receive time of ethernet packet)

12 else:

13 Start 4-way handshake, stop after receiving Msg2

14 return LSB(Msg1.sent_time) + LSB(Msg2.rssi)

15 + LSB(Msg2.receive_time) + Msg2.snonce

16

17 def GenRandom():

18 local = "\x00" * 32

19 # Wait for Ethernet traffic or association, and

20 # loop until result is "random enough" or 32 times

21 for i in range(32):

22 buf = Hash(macaddr + currtime + local + i)

23 for j in range(32):

24 local += NetworkJitter()

25 return Hash(macaddr + currtime + local + "\x20")

3 Breaking the 802.11 RNG

In this section we argue that the Random Number Gen-
erator (RNG) of 802.11 is flawed, and break several im-
plementations by predicting the generated group key.

3.1 The Proposed RNG in 802.11
The security enhancements amendment to 802.11, called
802.11i, includes a software-based RNG [22, §H.5.2]. It
extracts randomness from clock jitter and frame arrival
times. While the standard states the proposed algorithm
is only expository, and real implementations should ex-
tend it with other sources of entropy, we found that sev-
eral platforms directly implement it and even simplify it.

Listing 1 contains the proposed RNG as the function
GenRandom. The outer for-loop first calculates a hash
over the MAC address of the station, the current time, the
local variable, and the loop counter. Then it makes mul-
tiple calls to NetworkJitter in order to collect random-
ness from the arrival times of Ethernet or Wi-Fi frames.
Here LSB returns the least significant byte of a times-
tamp. Note the comment on line 20, which is copied
almost verbatim from the standard. It instructs to either
run the outer loop 32 times, or until the lcoal variable
is “random enough”. No clarification is made on what
this exactly means. The standard also mentions that the
variable currtime can be set to zero if the current time
is not available. However, there is no discussion on how

this impacts the RNG, e.g., whether additional iterations
of the outer for-loop should be executed. Additionally,
the standard does not mandate a minimum resolution for
the timestamps that are used. It only states that the send
and receive timestamps of frames should use the highest
resolution possible, preferably 1 ms or better. Finally, the
RNG is executed on demand, i.e., there is no state saved
between two invocations of GenRandom.

3.2 Analysis

A careful inspection of the RNG shows it is ill-
defined and likely insecure. One problem lies with the
NetworkJitter function, which is called 256 times by
GenRandom. First, the if test on line 10 is ambiguous. If
it checks whether there was Ethernet traffic in the last x
seconds, repeated calls will probably operate on the same
Ethernet packet, and the function will return the same
data. On the other hand, if this test implies monitoring
the Ethernet interface for x seconds, this might cause a
total delay of 256 ·x seconds. Furthermore, the value of x
is not given. In any case, either calling NetworkJitter

implies waiting a significant amount of time until there
is new traffic, or repeated calls return the same value.

When the second clause of the if statement on line 10
is taken, the arrival times of frames transmitted during
the 4-way handshake are used. Specifically, it mentions
to initiate the 4-way handshake. This is something only
an AP can do when a client is trying to connect to this
AP (see Figure 2). Therefore the proposed algorithm is
only usable by APs. We also remark that if the AP were
to constantly abort the handshake after receiving mes-
sage 2 (see line 13), most clients will blacklist the AP
for a certain period. During this period, the client will
no longer attempt to connect to the network. Hence it
becomes infeasible to initiate and abort 256 4-way hand-
shakes, which is something the random number gener-
ator is supposed to do. We conclude that the function
NetworkJitter is unusable in practice. Based on this
we conjecture, and empirically confirm in Section 3.4,
that vendors will not implement this function.

Another design flaw is that no state is kept between
subsequent calls to GenRandom. Hence its output de-
pends only on a small amount of network traffic and
timestamp samples. A better design is to collect random-
ness in a pool, and regularly reseed this pool with new
randomness. When done properly, this protects against
permanent compromise of the RNG, iterative guessing
attacks, backtracking attacks, and so on [25, 3, 9].

We conclude that the proposed RNG is questionable
at best. Either it returns bytes having a low amount of
entropy, or calling it will incur significant slowdowns. In
Section 3.4 we will show that in practice this construc-
tion results in defective and predictable RNGs.



3.3 Generation of the Group Key

The 802.11 standard defines, but does not mandate, a key
hierarchy for the generation of group keys [21, §11.6.1].
This hierarchy is described in Listing 2, where macaddr
denotes the MAC address of the AP, and currtime is
either the current time or zero. The on startup func-
tion is executed at boot time, and generates a random
auxiliary key called the Group Master Key (GMK). Ad-
ditionally, it initializes the key counter variable to a
pseudo-random value [21, §11.6.5]. Actual group keys,
called Group Temporal Keys (GTKs), are derived from
the GMK and key counter using a Pseudo-Random
Function (PRF) in new gtk. The length of the gener-
ated GTK depends on the cipher being used to protect
group traffic. If TKIP is used, the GTK is 32 bytes long.
If CCMP is used, the GTK is 16 bytes long. This implies
the PRF has to generate either 128 or 256 bits of keying
material, depending on the configuration of the network.
Hence we use the function name PRF-X, where the value
of X depends on the amount of requested keying mate-
rial. Note that the implementation of PRF-256 is shown
in Listing 1, and that PRF-128 closely resembles this
function. The latest standard also states [21, §11.6.1.4]:

“The GMK is an auxiliary key that may be used to de-
rive a GTK at a time interval configured into the AP
to reduce the exposure of data if the GMK is compro-
mised.”

However, this makes no sense: there is no point in in-
troducing a new key to reduce the impact if that key it-
self leaks. Curiously, we found that older versions of the
standard did not contain this description of the GMK. In-
stead, older versions stated that the GMK may be reini-
tialized to reduce the exposure of data in case the current
value of the GMK is ever leaked.

Most implementations renew the GTK every hour by
calling a function similar to new gtk. More importantly,
the key counter variable is also used to initialize the
Key IV field of certain EAPOL-Key frames (see Fig-
ure 3). After using the value of key counter for this
purpose, it is incremented by one. Since these IVs are
public values, the value of key counter is known by
adversaries. We found that some implementations even
use key counter to generate nonce values during the
4-way handshake, though this is not recommended as it
may enable precomputation attacks [21, §8.5.3.7].

One major disadvantage of the proposed key hierar-
chy, is that fresh entropy is never introduced when gener-
ating a new group key in new gtk. Hence, once the value
of GMK has been leaked, or recovered by an attacker, all
subsequent groups keys can be trivially predicted.

Since the standard assumes that GenRandom provides
cryptographic-quality random numbers, there appears

Listing 2: Python-like pseudocode describing the group
key hierarchy (and generation) according to the 802.11
standard.

1 def on_startup():

2 GMK, key = GenRandom(), GenRandom()

3 buf = macaddr + currtime

4 key_counter = PRF-256(key, "Init Counter", buf)

5

6 def new_gtk():

7 gnonce = key_counter++

8 buf = macaddr + gnonce

9 GTK = PRF-X(GMK, "Group key expansion", buf)

to be no advantage in using this key hierarchy. In-
stead, the AP can directly call GenRandom to generate
new group keys. Some consider this key hierarchy a
relic from older 802.11 standards, which did not yet re-
quire that devices must implement a strong RNG [20].
Perhaps the only (unintended) advantage this construc-
tion has, is that the first group key is now determined
by two calls to GenRandom, instead of only one call.
Hence, if an adversary is trying to attack a weak im-
plementation of GenRandom, he has to predict its out-
put twice (see Section 3.4). Nowadays implementations
are allowed to directly generate a random value for the
GTK [21, §11.6.1.4], though many platforms still imple-
ment the proposed group key hierarchy (see Section 3.4).

3.4 Practical Consequences
We now study the RNG of real 802.11 platforms. First
we focus on popular consumer devices. To estimate
the popularity of a specific brand, we surveyed wireless
networks in two Belgian municipalities. We were able
to recognize specific brands based on vendor-specific
information elements in beacons. We detected 6803
networks, and found that MediaTek- and Broadcom-
based APs alone covered at least 22% of all Wi-Fi net-
works. We will focus on both because of their popu-
larity. Additionally we examine Hostapd for Linux. Fi-
nally, we study embedded systems by analysing the Open
Firmware project. We found that, apart from Hostapd, all
these platforms produce predictable random numbers.

3.4.1 MediaTek-based Routers

Access points with a MediaTek radio use out-of-tree
Linux drivers to control the radio1. These drivers directly
manage the 4-way handshake and key generation. They
implement the 802.11 RNG as shown in Listing 1, but
do not call NetworkJitter. This strengthens our hy-
pothesis that this function is infeasible to implement in

1Available from www.mediatek.com/en/downloads1

www.mediatek.com/en/downloads1


practice. It also means the only source of randomness is
the current time, for which it uses the jiffies counter of
the Linux kernel. This counter is initialized to a fixed
value at boot, and incremented at every timer interrupt.
The number of timer interrupts per second is configured
at compile time and commonly lies between 100 and
1000. Hence it is a coarse grained timestamp, meaning
the currtime variable likely has the same value each
time it is sampled in GenRandom. That is, the current
time is the only random source being used, and provides
little entropy.

The group key hierarchy is implemented according to
the 802.11 standard, with one exception. Instead of ini-
tializing gnonce to key counter in line 7 of Listing 2,
it generates a new value using GenRandom, and assigns
the result to gnonce.

We show that this RNG is flawed by predicting the
group key generated by an Asus RT-AC51U. A similar
approach can be followed for other routes that also use a
MediaTek radio. The first step is to predict the GMK
generated at boot. By recompiling the firmware, and
printing out the jiffies values that were used at the start
and end of an invocation of GenRandom, we observe that
it uses at most two different values. Note that we printed
these values out only after calling GenRandom, to assure
we did not noticeably influence the used jiffies values.
Hence the jiffies values is incremented at most by one
while executing GenRandom. Since this increment may
happen in any of the 32 loops, GenRandom can result
in total 32 possible values if the initial jiffies value is
known. If AES-CCMP is used to protect group traffic,
the initial jiffies value when generating the GMK lies in
the range [232− 72889,232− 72884]. If WPA-TKIP is
used, it lies in [232− 73067,232− 73061]. The number
of attached USB or Ethernet devices, amount of Ether-
net traffic, or other Wi-Fi options, did not impact these
estimates. Since it is trivial to determine whether AES
or TKIP is used, and less than 10 possible initial values
are used in both cases, we end up with at most 32 · 10
possible values for the GMK.

The second step is to estimate the jiffies count when
the GTK, i.e., group key, was generated. By default, a
new group key is generated every hour. Hence, if we
know the uptime of the router, we can determine when
the current group key was generated. Conveniently, bea-
cons leak the uptime of a device in their timestamp field.
This field is used to synchronize timers between all sta-
tions [21, §10.1], and is generally initialized to zero at
boot. Hence its value corresponds to the uptime of the
router. From this we can estimate the jiffies counter’s
value at the time the group key was generated. However,
as the device keeps running, clock skew will affect our
prediction. By logging jiffies values, we observed that
the clock skew over one month made our prediction off

by at most 4500 jiffies. Therefore, even after an uptime
of year, our prediction of the jiffies value will only be off
by roughly 50000. In other words, we conjecture that the
prediction after a year will be off by at most 200 seconds.

We created an OpenCL program to search for the
group key on a GPU. It tests candidate keys by decrypt-
ing the first 8 bytes of a packet, and checking if they
match the predictable LLC/SNAP header. If the tar-
geted router has been running for one year, it has to test
320 ·50000 ·32≈ 229 candidates to recover the group
key. However, testing each key is rather costly, as it
involves calculating 33 · 4 SHA-1 hashes to derive the
group key, and we must then decrypt the first 8 bytes
of the packet to verify the key. Nevertheless, on our
NVIDIA GeForce GTX 950M, it takes roughly two min-
utes to test all 229 candidates and recover the GTK. We
confirmed this by successfully predicting several group
keys generated by our Asus RT-AC51U, when it had an
uptime of more than a month. We conclude the group
key generated by a MediaTek driver can be brute-forced
using commodity hardware in negligible time.

3.4.2 Broadcom Network Authentication

The network access server of Broadcom implements the
4-way handshake, including the necessary key genera-
tion. It implements the group key hierarchy according to
the 802.11 standard (see Listing 7). Additionally, it uses
the key counter variable to initialize the Key IV field
of EAPOL-Key frames. However, it does not implement
the RNG as proposed in the 802.11 standard. Instead, the
RNG it uses depends on the kernel used by the device.

When running on a VxWorks or eCos kernel, random
numbers are generated by taking the MD5 checksum of
the current time in microsecond accuracy. Hence ran-
dom numbers are straightforward to predict. And since
the output of MD5 is used, only 16 bytes of supposedly
random data is generated in every call. One widely used
device that uses a VxWorks kernel, is version 5 or higher
of the popular WRT54G router. Furthermore, the Apple
AirPort Extreme also uses a VxWorks kernel. To pre-
dict the group key generated by these devices, we only
have to predict the value of GMK. Recall that the value
of key counter is leaked in the Key IV field of certain
EAPOL-Key fields, and can simply be passively sniffed.
Since GMK is a 32-byte value, it is initialized by calling
the random number generator twice. In order to predict
the output of these two calls, we must first determine the
time at which the group key was generated based on the
uptime of the router. Similar to the MediaTek case, the
uptime can be derived from the timestamp field in bea-
cons. Assuming we can estimate time at which the group
key was generated with an accuracy of one second, and
that the timestamp in the next call to the RNG differs by



Listing 3: Generation of random nonces by the Open
Firmware project in Python-like pseudocode.

1 def on_system_boot():

2 rn = lcg_next(milliseconds since boot)

3 data = macaddr + rn

4 rn = lcg_next(rn)

5 nonce = PRF-256(rn, "Init Counter", data)

6

7 def lcg_next(rn):

8 return rn * 0x107465 + 0x234567

9

10 def compute_next_snonce():

11 nonce += 1

12 return nonce

at most 10 ms, we have to test 1000000 · 10000 ≈ 233

keys. We implemented an OpenCL program to simu-
late this search, and on our GeForce GTX 950M, it takes
around 4 minutes to test all candidate keys. Hence the
generated group keys by this RNG can be predicted us-
ing commodity hardware.

When running on a Linux kernel, random bytes are
read from /dev/urandom. This is problematic since, on
routers and embedded devices, /dev/urandom is com-
monly predictable at boot [19]. And since entropy for
the group keys is only collected at boot (see Section 3.3),
this again means all groups keys may be predictable.

3.4.3 The Linux Hostapd Daemon

Hostapd implements the 802.11 group key hierarchy as
shown in Listing 2. However, when generating a new
group key using a function similar to new gtk, it also
samples and incorporates new entropy. Additionally,
Hostapd does not implement the 802.11 RNG. Instead,
it generates keys by reading from /dev/random. In case
insufficient entropy is available, it will re-sample from
/dev/random when the first client is attempting to con-
nect. In case there still is not enough entropy available,
the client is not allowed to connect All combined, this
means the keys used by Hostapd should be secure.

3.4.4 Open Firmware (OpenBoot)

The Open Firmware project, previously called Open-
Boot, is a free and open source boot loader programmed
in Forth2. Most notably it is used in the One Laptop
Per Child project. Interestingly, it provides basic but se-
cure Wi-Fi functionality during the early stages of the
boot process. Since at this stage no operating system is
loaded, we consider it an ideal candidate to investigate
how vendors implement RNGs in a constrained (embed-
ded) environment.

2Available from svn://openbios.org/openfirmware

Currently, the Wi-Fi module of Open Firmware only
provides client functionality. Therefore we focus on the
generation of random nonces during the 4-way hand-
shake. Listing 3 illustrates how Open Firmware gener-
ates these nonces. Summarized, when loading the Wi-Fi
module, a random initial nonce is generated, and this
nonce is incremented whenever it is used. In this regard,
the algorithm follows the 802.11 standard [21, §11.6.5].
However, the generation of the initial random nonce is
very weak. It takes the uptime of the device in number of
milliseconds, runs this twice through a linear congruen-
tial generator, combines it with its own MAC address,
and finally expands this data using a Pseudo-Random
Function (PRF). All this information can be predicted or
brute-forced by an adversary.

We attribute this weak construction to a careless im-
plementation, and treat it as an indication that a better
design is to let the Wi-Fi chip generate random numbers
itself. Users can then query the Wi-Fi chip when new
randomness is needed. In Section 3 we demonstrate how
a strong random number generator can be implemented
using commodity Wi-Fi devices.

4 RC4 in the 4-Way Handshake

In this section we present a (type of) downgrade attack
against the 4-way handshake. As a result, RC4 is used
to encrypt sensitive information in the handshake. We
present two attacks against the usage of RC4 in the hand-
shake, and show how it allows an attacker to recover the
group key. We also determine the performance of our
attacks, and propose countermeasures.

4.1 Downgrading to RC4

When inspecting the 4-way handshake in Figure 2, we
can see that the AP sends the group key (GTK) to the
client before the client verifies the IEs of the AP. Re-
call that these IEs contain the supported cipher suites
of the AP, which are advertised in plaintext beacons.
In other words, the client can only detect that a down-
grade attack has occurred after the AP has transmitted
the group key in Msg3. This is problematic because, if
multiple ciphers can be used to protect the handshake, an
adversary can try to perform a downgrade attack to in-
duce the AP into encrypting and transmitting the group
key using a weak cipher.

Interestingly, the 4-way handshake can indeed be pro-
tected by several cipher suites [21, §11.6.2], meaning a
downgrade attack is possible. More specifically, the ci-
pher suite that is used to protect the handshake is deter-
mined by two settings that may, or may not, be requested
by the client in its association request (see Figure 2). In

svn://openbios.org/openfirmware


Table 1: Cipher suites used in the 4-way handshake.

Selected Options Ciphers Used
Fast Transition (FT) AES-CMAC, AES key wrap
CCMP without FT HMAC-SHA1, AES key wrap
TKIP without FT HMAC-MD5, RC4

particular, when support for fast network transitions is re-
quested, AES-CMAC and and NIST AES key wrap are
used to protect messages in the 4-way handshake. Oth-
erwise, the cipher used to protect the handshake depends
on the pairwise cipher that will be used to protect nor-
mal data frames transmitted after the handshake. In case
CCMP will be used, the 4-way handshake uses HMAC-
SHA1 and NIST EAS key wrap. More troublesome,
if TKIP will be used, then HMAC-MD5 and RC4 are
used to authenticate and encrypt data, respectively. An
overview of this selection process is shown in Table 1.

Our idea is now to create a rogue AP that only adver-
tises support for TKIP. Hence victims wanting to con-
nect to the AP will use TKIP, and in turn the group key
transmitted in the 4-way handshake will be encrypted us-
ing RC4. This works because the client will only detect
the downgrade attack after receiving message 3. How-
ever, to make the AP send message 3, it must first re-
ceive and successfully verify the integrity of message 2.
If its integrity cannot be verified, which is done using
the negotiated session keys, the AP will not continue the
handshake. Since the session keys depend on the MAC
addresses of the client and AP, it means we must create a
rogue AP with the same MAC address as the real one.
Fortunately this is possible by performing a channel-
based man-in-the-middle attack [46]. Essentially, the at-
tacker clones the AP on a different channel, and forwards
packets to, and from, the real AP. The MAC addresses in
forwarded frames are not modified. This assures the sta-
tion and AP will generate the same session keys, mean-
ing the AP will successfully verify the authenticity of
message 2. This man-in-the-middle position allows the
attacker to reliably manipulate messages. In particular, it
will use this position to modify the beacons and probe re-
sponses so it seems the AP only supports (WPA-)TKIP.
Hence the client will be forced to select TKIP, causing
the AP use to RC4 for encrypting the group key.

We tested this downgrade-style attack against a net-
work that advertised both support for TKIP and CCMP.
Since the rogue AP only advertised support for TKIP, the
victim indeed selected TKIP. We then confirmed that the
AP encrypts the group key using RC4, and that the client
detected our attack only after receiving message 3.

Interestingly, the 4-way handshake uses RC4 in a
rather peculiar manner [22, §8.5.2j]. The per-message
RC4 key is the concatenation of the 16-byte Initial-

ization Vector (IV) and the 16-byte Key Encryption
Key (KEK). Additionally, the initial 256 keystream bytes
are dropped. This construction is similar to the one used
by WEP, except that the IV is longer, and that some ini-
tial keystream bytes are dropped. Interestingly, using a
longer IV likely weakens this per-message key construc-
tion [28, 36], while dropping the initial keystream bytes
should strengthen it [33, 28]. In the next two sections,
we analyze the impact of this peculiar combination.

4.2 Recovering the Key Encryption Key
We first examine whether it is possible to perform a key
recovery attack similar to those that broke WEP [11, 42].
In general, these attacks are applicable if a public IV
is prepended (or appended) to a fixed secret key. This
matches the construction of the per-message key K in
the 4-way handshake, where the public 16-byte IV is
prepended to the secret but static 16-byte KEK key. More
formally, the per-message key is constructed as follows:

K = IV || KEK

Although the first 256 keystream bytes of RC4 are
dropped, Mantin showed this does not prevent key re-
covery attacks [28]. We will adapt Mantin’s attack to the
4-way handshake, an study whether it is feasible to per-
form this attack in practice.

Similar to the original FMS attack [11], Mantin’s ex-
tension of the FMS attack uses an iterative process to re-
cover the key K [28]. That is, each iteration assumes the
first x bytes of K are known, and attempts to recover the
next key byte K[x]. In the first step of each iteration of
Mantin’s new attack, keystreams are collected that were
generated with an IV for which the condition SKSA

x−1 [1] = x
holds. We call these applicable IVs. Mantin proved that
applicable IVs leak information about the key byte K[x]
through the following relation [28]:

Pr[ K[x] = S−1
x−1[i257− z257]− jx−1−Sx−1[x] ]≈ 1.1 ·2−8

(1)
This relation can be used to recover K[x] with a simple
voting mechanism as follows. Each applicable IV casts
a vote for a certain value through equation (1). After all
IVs are processed, the value with the most votes is as-
sumed to be the value of K[x]. Unfortunately, this has
the downside that a single incorrect guess for any byte
means the complete key K is also wrong. To mitigate
this, we pick the C most likely values for each byte, and
construct C16 candidate values for K. Each candidate can
be tested based on the captured IVs and corresponding
keystreams. We simulated this attack against the 4-way
handshake, with as goal to determine how many applica-
ble IVs have to be capture to recover the KEK key. The
result of this simulation is shown in Figure 5. To obtain
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Figure 5: Probability of finding the 16-byte KEK key
given the number of applicable IVs and the branch fac-
tor C.

a 80% success ratio of recovering the KEK, roughly 221

applicable IVs have to be collected. Note that to execute
the attack, we must be able to determine the value of z257.
Fortunately, this is possible by relying on the predictable
IEs that are located at the start of the EAPOL Key Data
field, meaning we can derive the keystream at these ini-
tial positions.

We now determine how much effort it takes to collect
the required number of applicable IVs. First notice that
the most likely way the condition SKSA

x−1 [1] = x is satisfied,
is when the value x is swapped into position 1 at round 1
of the KSA (recall Listing 4). Or more formally, that
j1 = x, since K[x] is likely not modified in the first round.
Indeed, the 15 other rounds only affect position 1 if j
ever equals 1. Assuming a random initial IV is used, this
will not happen with a probability of

( 255
256

)15
= 0.94. At

round one, j1 = K[0] + 1+K[1] (we assume K[0] 6= 1
which holds with high probability). Hence, with high
probability, an IV is applicable when K[0]+K[1] = x−1.

The 802.11 standard states that a station must generate
an initial random IV at startup, and increment this IV af-
ter it is used in a message [21, §11.6.5]. In other words,
the IV is used as a counter. However, it does not spec-
ify whether little or big endian counters must be used.
Our experiments indicate that most devices we use the
IV as a big endian counter. Fortunately, from a defend-
ers perspective, this means that generating the required
number of applicable IVs takes an enormous amount of
time. Assuming that the condition K[0] +K[1] = x− 1
does not hold, we must wait until K[1] has been incre-
mented sufficiently many times. However, only every
25614 = 2112 IVs does the value of K[1] change. Clearly,
this means that collecting the required number of IVs is
infeasible when the AP uses a big endian counter. If the
IV is generated by a little endian counter, the condition
K[0] + K[1] = x− 1 is generally satisfied every 256th
message. This means around 256 · n messages must be

collected in order to have roughly n applicable IVs for
all iterations.

While it is possible to generate many handshakes by
forcibly disconnecting clients, new handshakes will use
a different KEK key. Since our attack assumes that the
KEK is constant, this is not an option. The only method
we identified to make the AP send several handshake
messages protected by the same KEK, is by not acknowl-
edges them, and letting the AP retransmit them. Note
that each retransmission uses a new IV. Unfortunately,
only a few messages will be retransmitted before the AP
gives up and aborts the handshake process. In the next
Section we present an attack that does tolerate frequent
changes of the KEK key. We conclude that the 4-way
handshake, as defined in the 802.11i standard, is vulnera-
ble to key recovery attacks. However, these attacks seem
difficult to pull off against popular implementations.

4.3 Plaintext Recovery Attacks

We now turn our attention to plaintext recovery attacks,
where an adversary targets information that is repeatedly
encrypted under different RC4 keys. Previous work on
RC4 has shown that these types of attacks can be very
successful, with attacks against TLS and TKIP being on
the verge of practicality [2, 47]. In particular, the attack
against WPA-TKIP by Paterson et al. [37] is fairly sim-
ilar to our scenario. They showed that for WPA-TKIP,
the public 3-byte prefix of the per-message RC4 key in-
duces large, prefix-dependent, biases into the RC4 key-
stream [37, 15]. An adversary can precompute these
prefix-dependent biases, and mount a powerful plaintext
recovery attack against the first few bytes encrypted by
RC4. This inspired us to investigate whether the pub-
lic 16-byte IV used in the 4-way handshake also induces
IV-dependent biases, even though the first 256 keystream
bytes are dropped. Hence we examine the biases induced
by the public IV contained in EAPOL frames, and then
demonstrate through simulations that these can be used
to recover the group key.

It is impossible to empirically investigate every pos-
sible IV, since this would mean inspecting 2128 values.
Instead, we initially generated detailed keystream statis-
tics for four randomly selected IVs. This indicated that
large, IV-dependent biases indeed persist in the key-
stream, even after the first 256 bytes (which are dropped).
Motivated by this result, we took the all-zero initializa-
tion vector IV0, and investigated how changing the values
at each specific position in the IV influences the key-
stream distribution. Changing a byte at position x to
value y is denoted by IV0[x] = y. The generation of all
datasets took more than 13 CPU years.

Figure 6a and 6b show the keystream distribution for
the initialization vectors IVa and IVb, respectively. The
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Figure 6: Biases in the RC4 keystream when concatenating a fixed 16-byte IV with a random 16-byte key (here called
KEK key), and when using random 16-byte keys. Each points encodes a bias as the number (pr−2−8) ·224, capped to
values in [−50,50], with pr the empirical probability of the keystream byte value (y-axis) at a given location (x-axis).

distributions of IVc and IVd behave similarly. Their val-
ues were randomly generated in Python and are:

IVa = 0x2fe931f824ef842bf262dbca357bb31c

IVb = 0x48d9859f9fa08bb1599744a20491dd49

IVc = 0x6c1924761b03faf8decc0dfc09dd3078

IVd = 0xe31257489cbe7d91e5365286c26f5023

These keystream distributions were generated using 245

RC4 keys for each IV. For comparison, Figure 6c and
Figure 9c shows the keystream distribution for fully ran-
dom 16-byte keys, generated using roughly 247 RC4 key-
streams [47]. We observe that the initialization vector in-
duces strong biases that are visible as straight lines, even
after position 256. By comparing these biases with the
keystream distribution of 16-byte random RC4 keys in
Figure 6c, we can conclude that the biases represented
by the light and red background, are not caused by the
specific IV values. Instead, they appear inherent to RC4.

We also generated 16 datasets, where in each dataset
the value at one specific position in the all-zeros IV is
changed. That is, for 0 ≤ x ≤ 15, we generated datasets
for the vectors IV0[x] = y, where y ranges between 0
and 255. Each dataset was generated using 243 keys, re-
sulting in rather noisy distributions. Nevertheless, an in-
spection of these datasets confirmed that each IV induces
specific biases, visible as straight lines in our graphs. A
more detailed discussion of these biases is out of scope,
and is left as future work.

We now use the IV-dependent biases to recover re-
peated plaintext, in order to get an indication of how
well a plaintext recovery attack works against the 4-way
handshake. This is done by combining the precomputed
keystream distributions with captured ciphertexts, in or-
der to calculate likelihood estimates for each plaintext
value. The actual plaintext value is then assumed to be
the one with the highest likelihood. Since our goal is
mainly to evaluate the performance of the resulting at-
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Figure 7: Success rate of decrypting a byte in the EAPOL
Key Data field, in function of the byte position and num-
ber of collected ciphertexts. The legend shows the total
number of ciphertexts used, where half of the ciphertexts
were generated using IVa, and the other half using IVb.

tacks, we refer to previous work for the technicalities
behind these calculations [2, 37, 47]. In particular, we
implemented the binning algorithm proposed by Pater-
son et al. [37], and the single-byte candidate generation
algorithm proposed by Vanhoef and Piessens [47]. To
keep the computations feasible, we assumed that half of
the captured ciphertext were generated by IVa, and the
other half by IVb. For the binning algorithm of Pater-
son et al., Figure 7 shows the probability of correctly de-
crypting a byte. For the candidate generation algorithm,
which returns a list of plaintext candidates for a sequence
of bytes, we first need to determine at which position the
group key is stored in the EAPOL Key Data field.

The location of the group key depends on which cipher
suites are supported. If only TKIP is supported in a RSN
network, it starts at position 30. In contrast, if both TKIP
and AES are supported, and if the older WPA informa-
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tion elements are included in addition to the RSN IEs3,
the group key starts at position 62. For other configura-
tions, the group key is located somewhere between po-
sition 30 and 62. The probability of recovering a 16-
byte key at these positions, in function of the number of
captured ciphertexts (handshakes), is shown in Figure 8.
We remark that if the group key starts at position 62, at-
tacks that exploit Mantin’s ABSAB bias become more ef-
ficient [29, 6]. This is because the 62 bytes that precede
the group key are predictable, and hence an attack similar
to the one that broke RC4 in TLS can be launched [47].

Finally, in principle it is also possible to attack group
key update messages, since the 802.11 standard does not
mandate that these messages should be encrypted using
the pairwise cipher [21, §11.6.7]. Group key updates
use EAPOL frames, and are sent when the AP gener-
ates a new group key. Interestingly, in these messages
the group key is either located at position 8, or at posi-
tion 0. The success rate of recovering a 16-byte key at
these positions is shown in Figure 8. For example, if the
key starts at position 8, roughly 231 encryptions of the
GTK have to be captured in order to decrypt it. Since in
this case there is little surrounding known plaintext, it is
the best attack an adversary can launch [2, 47, 6].

4.4 Countermeasures

To prevent the downgrade attack, APs should disable
support of WPA-TKIP. Even when an adversary creates
a rogue AP advertising TKIP, the real AP will reject any
request for TKIP, and hence will never use RC4 in the
4-way handshake. Similarly, clients should not connect
to a network using WPA-TKIP.

3Early implementations based on the draft 802.11i standard use
WPA IEs, instead of RSN IEs as used in modern networks.

5 Abusing the Group Key

In this section we show that the group key can be used to
decrypt and inject any traffic, including unicast traffic.

5.1 Injecting Unicast Frames
First we explain how to inject unicast traffic using the
group key. This is not possible by simply encrypting a
unicast frame with the group key, and setting the KeyID
field to the id used by the group key. The receiver always
uses pairwise keys to decrypt unicast frames, and ignores
the KeyID value (recall Section 2.1). Furthermore, it is
not possible to encapsulate unicast IP packets in group
addressed frames. Indeed, RFC 1122 states that stations
should discard unicast IP packets that were received on
a broadcast or multicast link-layer address [5, §3.3.6].
However, this check is only performed when the packet
is passed on to the IP layer. Since an AP does not op-
erate at the IP layer, but on the MAC layer, it does not
perform this check. Inspired by this observation, we en-
crypt the unicast IP packet using the group key, and send
it to the AP. For the three address fields in the frame we
use the following values:

addr1 = FF:FF:FF:FF:FF:FF

addr2 = Spoofed sender MAC address
addr3 = Spoofed destination MAC address

Although in a normal network the AP never processes
group addressed frames, we found that APs can be forced
to process our injected broadcast packet by setting the
ToDS bit in the Frame Control (FC) field. To assure
the correct value of the KeyID field is used, an adver-
sary can monitor other broadcast frames, or brute-force
this value. The AP will then decrypt this packet using
the group key. It will notice that the destination address
(addr3) does not equal its own MAC address, and hence
will forward the frame to the actual destination. If the
destination MAC address is another wireless station, the
AP will encrypt the frame using the appropriate pairwise
key, and transmit it. As a result, the receiver will decrypt
and process the forwarded, now unicast, frame. If the
destination address is not a wireless station, it will be for-
warded over the appropriate Ethernet connection. This
technique can be used to inject IP packets, ARP packets,
and so on, using the group key.

5.2 Decrypting All Traffic
Since unicast frames are encrypted with pairwise keys,
we cannot directly use the group key to decrypt them.
Nevertheless, it is possible to trick stations into sending
all IP traffic to the broadcast MAC address, meaning the



group key will now be used to encrypt this traffic. This
is done by performing an ARP poisoning attack. The
malicious ARP packets are injected using the technique
presented in Section 5.1. In our attack, we poison the
ARP cache of the client so the IP address of the gateway
is associated with the broadcast MAC address. Similarly,
on the router, the IP address of the client will also be as-
sociated with a broadcast address. Since IP addresses
in local networks are generally predictable, an attacker
can brute-force the IP address of the client and router.
After the ARP poisoning attack, all IP packets sent by
the client and router are encrypted using the group key.
An attacker can now capture and decrypt these packets.
Furthermore, he can forward them to their real destina-
tion using the (unicast) packet injection technique of Sec-
tion 5.1, so the victim will not notice he is under attack.

5.3 Experimental Verification
We tested this attack against an Asus RT-AC51U and a
laptop running Windows 7. The group key was obtained
by exploiting the weak random number generator as dis-
cussed in Section 3.4.1. In order to successfully perform
the ARP poisoning attack against Windows, we injected
malicious ARP requests. First, we were able to success-
fully inject the ARP packets using the group key. This
confirms that the group key can be used to inject unicast
packets. Once we poisoned the ARP cache of both the
victim and router, they transmitted all their packets to-
wards the broadcast MAC address. At this point we were
able to successfully decrypt these broadcast packets us-
ing the group key, and read out the unicast IP packets
sent by both the victim and router.

5.4 Countermeasures
If the network is operating in infrastructure mode, the AP
should ignore all frames with a broadcast or multicast
receiver address. This prevents an attacker from abusing
the AP to forward unicast frames to stations. Another op-
tion is to disable all group traffic. While this may seem
drastic, it is useful for protected but public hotspots. In
these environments, connected stations do not trust each
other, meaning group keys should not be used at all. In-
terestingly, the upcoming Hotspot 2.0 standard already
supports this feature under the Downstream Group Ad-
dressed Forwarding (DGAF) option [49]. If DGAF is
disabled, no group keys are configured, meaning the sta-
tions and AP ignore all group addressed Wi-Fi frames.

6 A New RNG for 802.11 Platforms

In this section we propose a random number genera-
tor that extracts randomness from fine-grained Received

Signal Strength Indicator (RSSI) values. Specifically, we
rely on the spectral scan feature of commodity 802.11 ra-
dios. This gives us roughly three million RSSI measure-
ments per second, even if there is no background traffic.

6.1 Spectral Scan Feature
Most Atheros Wi-Fi radios, such as the AR9280, can per-
form RSSI measurements over the 56 sub-carriers used
in high throughput (HT) OFDM4. Atheros calls this fea-
ture a spectral scan. It matches the requirement to de-
code HT OFDM modulated frames, where the channel is
divided into 64 subcarriers [21, §18]. Eight of these sub-
carriers are used as guards to avoid channel cross talk,
and are thus not sampled, resulting in 56 usable subcarri-
ers. Therefore the spectral scan feature matches the nor-
mal OFDM demodulation requirements, and should be
straightforward to implement by other vendors as well.
The sweep time of one sample, i.e., spectral scan, is 4µs,
and these scans can be made even when there is no back-
ground traffic. Each RSSI measurement is reported as an
8-bit value. After some optimazations, we could make
our AR2980 chip generate around 50k samples per sec-
ond. Since each sample contains 56 RSSI values, this
totals to roughly three million measurements per second.

6.2 Random Number Generation
In our random number generator, we want to extract ran-
domness out of every single RSSI measurement. Since
our commodity devices can generate a large number of
measurements per second, even when there is no back-
ground traffic, we need a fast method to process all these
measurements. Hence our main goal is to design a tech-
nique to rapidly process all measurements. The resulting
output can then be given as input to a system that prop-
erly extracts and manages randomness (see for example
Yarrow-160 [25], or the model by Barak and Halevi [3]
and its improvements [9]). In other words, our goal is
only to design a method to rapidly process RSSI mea-
surements which can be implemented in Wi-Fi radios,
and to asses the quality of the resulting output.

We start by deriving one (possibly biased) bit out of
each RSSI measurement. Any biases will be suppressed
in a later step. Due to random variations in the back-
ground noise, the transmissions of other stations, and in-
ternal imperfections of the hardware, antenna, and radio,
we expect that each RSSI measurement contains some
amount of randomness. More concretely, we expect that
the least significant bit of each RSSI measurement dis-
plays the most amount of randomness. To also take into
account the other bits, we perform an exclusive or over
all bits in the 8-bit RSSI measurement. Even if the other

4See http://wikidevi.com/wiki/Atheros for a list.

http://wikidevi.com/wiki/Atheros


Table 2: Average number statistical test results for vari-
ous configurations of the random number generator.

Configuration Pass Poor Weak Fail
1 bit per subcarrier 97.2% 0% 2.8% 0%

1 bit per spectral scan 98.1% 0% 1.9% 0%
normal mode 98.1% 0% 1.9% 0%

bits are not random, this can only increase the overall
randomness. Since we are extracting 1 bit per subcarrier,
we call this initial generator the “1 bit per subcarrier”
configuration. When running the Dieharder statistical
test suite [7] on this configuration, we noticed promising
results (see Table 2). The Dieharder suite is a reimple-
mentation of the Diehard tests [31], and in addition con-
tains several tests from the NIST test suite [40]. While
none of the tests fail, on average 2.8% of the tests return
a weak result. However, this only means that the gener-
ated bits do not contain any obvious deficiencies. Subtle
or small biases may still be present, and have to be fil-
tered out. We do this by relying on the large number of
measurements that our commodity devices can generate.

To suppress possible biases in the 1-bit per subcarrier
construction, we combine several bits using an exclusive-
or chain. More formally, if we have a sequence of bits
b1,b2, . . . ,bn, the exclusive-or chain of these bits is bit =
b1⊕ b2⊕ . . .⊕ bn. Assuming that each bit bi is equal to
one with probability p, combining n bits in this manner
has the following characteristics [10]:

Pr[bit = 1] = 0.5−2n−1 · (p−0.5)n (2)

Pr[bit = 0] = 0.5+2n−1 · (p−0.5)n (3)

We can now see that as n goes to infinity, both probabil-
ities approach 0.5, meaning any possible biases will be
suppressed. Moreover, an exclusive-or chain should also
be straightforward to implement in a Wi-Fi radio.

In the second version of our generator, we use the
exclusive-or chain to generate one random bit for each
spectral scan sample. That is, all 56 random bits ex-
tracted from the subcarriers are XOR’ed together. We
call this the “1-bit per spectral scan” mode. The reason-
ing behind this construction is that one bit is now influ-
enced by all subcarriers, i.e., all available frequencies.
An attacker that wants to influence the generation of any
bit, now has to predict or influence all 56 subcarriers.
The new results of the Dieharder tests show this improves
the quality of the random numbers (see Table 2).

In a last step we combine 16 bits generated using the
1-bit per spectral scan construction. Again this is done
using an exclusive-or chain. We call this the “normal
mode”. Interestingly, the results of the Dieharded test
suite no longer improve. We conjecture that the 1.9% of

tests that are marked as weak are statistical flukes: even
a random steam of bits can look non-random at times.

Finally, we remark that in the normal execution mode
of the generator, in total 56 ·16 bits are XOR’ed together.
Hence, even if an attacker can correctly predict the 1 bit
per subcarrier with a probability of 98%, our normal exe-
cution mode still outputs one bit that is close to uniform.
More precisely, by relying on equation 2 and 3, the re-
turned bit equals one with a probability of approximately
0.5 · (1−2−52). Hence, by relying on the large number
of measurements returned by the radio chip, even a very
powerful attacker is unlikely to predict the final output of
the generator. Furthermore, these bits are outputted at a
speed of roughly 3125 bits per second. Finally, we be-
lieve that our technique can be efficiently implemented
in Wi-Fi chips themselves. In practice, implementations
can then query the Wi-Fi chip for random samples, and
properly and securely manage this collected randomness
using a model such as the one proposed by Barak and
Halevi [3], or one of its improvements [9].

7 Related Work

While the random number generators that are used in cer-
tain browsers [14], OpenSSL [8], Linux [3, 16], GNU
Privacy Guard [35], FreeBSD [50], and so on, have been
widely studied, we are not aware of any works that study
the random number generator of 802.11. More closely
related to our work, Lorente et al. discovered that many
routers generate weak, and sometimes predictable, de-
fault WPA2 passwords [27]. However, the random num-
ber generator of 802.11 is not used for this purpose, and
hence was not analyzed.

The security of the 4-way handshake has been stud-
ied in several works [17, 18, 34]. These works revealed
denial-of-service vulnerabilities [17, 34], or proof the se-
curity of an improved design [18]. Additionally, they
focus on whether an attacker can perform a downgrade
attack against the cipher used to protect traffic transmit-
ted after the handshake. In contrast, we study downgrade
attacks against the ciphers used to protect the handshake
itself. The 802.11 standard also contains an informative
analysis of the handshake [21, 11.6.6.8].

Many researchers have studied RC4 and its usage. Key
recovery attacks against WEP were discovered [11], and
were later improved in other works [48, 44, 43, 42]. In
particular, Mantin and Klein studied whether the WEP
key can still be recovered if the initial 256 bytes of RC4
are dropped [28, 26]. We extend this analysis by studying
the impact of 16-byte initialization vectors as used in the
4-way handshake, and perform simulations of resulting
attacks. AlFardan et al. showed that the initial 256 bytes
of RC4 are biased [2]. Vanhoef and Piessens extended
this result and showed that bytes between position 256



and 512 are also biased. [47]. In [6] Bricout et al. analyze
the structure and exploitation of Mantin’s ABSAB bias.

Security of group keys, and the isolation between
unicast and group traffic, is briefly mentioned in the
Hole 196 vulnerability [1]. However, this attack assumes
that an associated (trusted) client will abuse the group
key. Therefore it can only be considered an insider threat.
Furthermore, it does not discuss how to inject unicast
traffic using the group key, nor does it show how all in-
ternet traffic can be decrypted using the group key.

Several previous works use the RSSI measurements of
802.11 frames, as returned by commodity Wi-Fi radios,
to create secret key agreement protocols [32, 23, 38].
Such a protocol negotiates a shared secret between two
stations, that is unpredictable by observers. These works
use the average RSSI over all subcarriers, meaning some
entropy is lost compared to our per-subcarrier measure-
ments. We use the spectral scan feature to perform
RSSI measurements, which makes it possible to generate
these measurements even if there is no background traf-
fic. Models to properly collect and manage randomness,
such as those contained in RSSI measurements, have also
been studied. Examples are Yarrow-160 [25], the model
by Barak and Halevi [3], or the model by Dodis et al. [9].

8 Conclusion

Although the generation of pairwise 802.11 keys has
been widely analyzed, we have shown the same is not
true for group keys. For certain devices the group key
is easily predictable, which is caused by the faulty ran-
dom number generator proposed in the 802.11 standard.
This is especially problematic for Wi-Fi stacks in em-
bedded devices, as they generally do not have other
(standardized) sources of randomness. Furthermore, we
have demonstrated a downgrade attack against the 4-way
handshake, resulting in the usage of RC4 to protect the
group key. An adversary can abuse this in an attempt to
recover the group key.

We also showed that the group key can be used to in-
ject any type of packet, and can even be used decrypt all
internet traffic in a network. Combined with the faulty
802.11 random number generator, this enables an adver-
sary to easily bypass both WPA-TKIP and AES-CCMP.
To mitigate some of these issues, we also proposed and
implemented a strong random number generator tailored
for 802.11 platforms.
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(a) Using IVc with random KEKs.
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(b) Using IVd with random KEKs.
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(c) Using random 16-byte keys.

Figure 9: Biases in the RC4 keystream when concatenating a fixed 16-byte IV with a random 16-byte key (here called
KEK key), and when using random 16-byte keys. Each points encodes a bias as the number (pr−2−8) ·224, capped to
values in [−50,50], with pr the empirical probability of the keystream byte value (y-axis) at a given location (x-axis).
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