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ABSTRACT
Common among the wide variety of ubiquitous networked
devices in modern use is wireless 802.11 connectivity. The
MAC addresses of these devices are visible to a passive ad-
versary, thereby presenting security and privacy threats –
even when link or application-layer encryption is employed.
While it is well-known that the most significant three bytes
of a MAC address, the OUI, coarsely identify a device’s
manufacturer, we seek to better understand the ways in
which the remaining low-order bytes are allocated in prac-
tice. From a collection of more than two billion 802.11
frames observed in the wild, we extract device and model
information details for over 285K devices, as leaked by vari-
ous management frames and discovery protocols. From this
rich dataset, we characterize overall device populations and
densities, vendor address allocation policies and utilization,
OUI sharing among manufacturers, discover unique mod-
els occurring in multiple OUIs, and map contiguous address
blocks to specific devices. Our mapping thus permits fine-
grained device type and model predictions for unknown de-
vices solely on the basis of their MAC address. We validate
our inferences on both ground-truth data and a third-party
dataset, where we obtain high accuracy. Our results em-
pirically demonstrate the extant structure of the low-order
MAC bytes due to manufacturer’s sequential allocation poli-
cies, and the security and privacy concerns therein.

1. INTRODUCTION
802.11 wireless protocols are used in almost all commodity

network devices, including a variety of appliances, sensors,
and embedded systems. This Internet of Things (IoT) in-
cludes mobile phones, media players, access points, printers,
cameras, thermostats, and automobiles, and is predicted to
number 50 billion devices by 2020 [10].

Securing this vast footprint of wireless devices has thus
taken on increased importance [28]. In this paper, we re-
examine a specific weakness stemming from the use of 802.11:
exposure of link-layer Media Access Control (MAC) addresses.

This paper is authored by an employee(s) of the United States Government and is in the
public domain. Non-exclusive copying or redistribution is allowed, provided that the
article citation is given and the authors and agency are clearly identified as its source.
ACSAC ’16, December 05 - 09, 2016, Los Angeles, CA, USA

ACM ISBN 978-1-4503-4771-6/16/12. . . $15.00
DOI: http://dx.doi.org/10.1145/2991079.2991098

A passive adversary within radio range can capture MAC ad-
dresses – a persistent globally unique identifier – even when
link and application-layer encryption is employed. In addi-
tion to tracking and threats to user privacy, MAC addresses
advertise coarse information about device manufacturers via
the three most significant MAC bytes (the Organizationally
Unique Identifier (OUI)) [13].

In this work, we seek to better understand the extent to
which the remaining three low-order bytes can reveal infor-
mation about an observed device. Our intuition is simple:
if manufacturers allocate MAC addresses for a given OUI in
a predictable way, i.e. sequentially from a subprefix range of
the 224 space, this information can more finely fingerprint
the device. As a concrete example, within the 24:A2:E1
OUI block assigned to Apple, we find that approximately
half of the space is allocated to iPhone 5c (GSM) models,
while ∼20% is dedicated to the iPad Mini 2 (Cellular), and
another ∼20% is for the iPad Mini 2 (WiFi). Crucially, the
allocations are contiguous blocks. Thus, this vendor policy
permits inference of specific device type and model informa-
tion solely from the observed MAC address.

Associating MAC addresses with specific device models
presents a dilemma: given only public capture data, how
can we determine device model information? We build this
mapping from a collection of over two billion frames ob-
served in the wild, where we extract information leaked
by 802.11 management frames (probe requests, probe re-
sponses, and beacons) and multicast Domain Name Sys-
tem (mDNS) packets. Our collection is entirely passive and
we follow a strict IRB policy (detailed in §3.1).
While allocation practices vary across vendors, with sev-

eral exhibiting significant complexity, we show that they
are generally non-random. This determinism illustrates two
concerns: i) management protocols allow significant privacy
and security leaks; and ii) the structure and allocation of
MAC addresses lends itself to device fingerprinting. Gran-
ular fingerprinting of wireless devices is valuable for sup-
porting policy-based security and research efforts including
crowd density [16] and population diversity [19]. Device fin-
gerprinting permits profiling of user activity, habits, and
movements – an activity currently performed in the retail
sector [26, 25]. Commercial products such as [18] are de-
signed for vehicle and pedestrian traffic monitoring, and rely
on identifying device manufacturers.

More nefariously, fingerprinting can be employed to per-
form targeted attacks against a device [17, 7]. Recent work
creates denial of service attacks against Google Glass [22],
while commercial products can deauthenticate particular IoT
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Table 1: Example Management Frame (WPS) Fields
Manufact Model Name Model Num Device Name

Asus Nexus 7 Nexus 7 razor
ASUSTeK WPS Router RT-N65R ASUS WPS Router
Casio C811 4G C811 4G Peer Device
Cisco Linksys E2500 v1.0.05 Linksys E2500
HP DeskJet 3630 3632 HP-DeskJet 3630
HTC HTC One X HTC One X cingular us
Huawei Prism II Prism II U8686 TMO
LGE LG-D415 LG-D415 w7 tmo us
Samsung SCH-R740C SCH-R740C amazing3gcri

devices (cameras, drones, etc.) [23]. Fine-grained finger-
printing allows a criminal to easily and cheaply perform re-
connaissance, identifying e.g., 802.11-enabled security cam-
eras, thermostats, and home security systems. Even auto-
mobiles have been targeted via 802.11 radios using finger-
printing techniques to isolate Uconnect devices [9]. More
generally, the ability to systematically fingerprint and iden-
tify public works infrastructure such as water sensors, bio-
metric and medical monitors, and industrial control systems,
may expose these devices to targeted attacks.

We take a first step in decomposing MAC address struc-
ture to both provide a more granular MAC-based finger-
printing technique, as well as highlight security and privacy
concerns from these ubiquitous wireless device identifiers.
This paper thus makes the following primary contributions:

• Curation of a large corpus of 802.11 wireless data that
captures a non-trivial cross-section of devices. From this
data, we develop a technique to predict the specific model
of a device from its MAC address, enabling finer-grained
fingerprinting than previously possible.

• Analysis of the various MAC address allocation strate-
gies employed by different vendors. We find that MAC ad-
dresses are assigned to devices in a nonrandom manner,
with contiguous ranges of the OUI dedicated to distinct
models. The structured allocation of MAC addresses lends
itself to the development of a model fingerprinting strategy.

• Observation of OUI complexity, including multiple
manufacturers using a single OUI (particularly IoT devices
with third-party chipsets). Conversely, models commonly
span multiple OUIs.

• Validation of our model fingerprinting against a third-
party dataset with > 80% accuracy, and a practical appli-
cation of locally assigned MAC address derandomization
introduced in [6, 27]. Additionally, we achieve high preci-
sion and recall validating against a known set of 279 devices.
Finally, we submit our corpus to a 5-fold cross-validation
and observe ∼90% accuracy rate in predicting device mod-
els based solely on MAC addresses alone.

The remainder of this paper is organized as follows. We first
present background in §2. Section §3 details our methodol-
ogy, while §4 provides our analysis and results. We conclude
in §5 with suggestions for future work.

2. BACKGROUND

2.1 MAC Addresses
Every network interface on an 802.11 capable device has

a MAC address layer-2 hardware identifier. MAC addresses
are designed to be persistent and globally unique. OUIs
are purchased and registered with the Institute of Electrical
and Electronics Engineers (IEEE) [13]; the manufacturer is

Table 2: Example mDNS Fields
OS key value Derived Model

iOS model n27aap Apple Watch (38mm)
iOS model k93ap iPad 2 (WiFi)
iOS model n71map iPhone 6s (TSMC A9)
iOS model k66ap Apple TV 2G
BlkBry hwid 0x9600240a BlackBerry Cafe
BlkBry hwid 0x04002607 BlackBerry Z10
Android n SAMSUNG-SM-N910A Galaxy Note 4
Android n A0001 a1f0 (OnePlus) OnePlus One

then free to assign the remaining low-order three bytes (224

distinct addresses) to devices. To the best of our knowledge,
our work is the first to shed light on the allocation policies
employed by manufacturers for assigning addresses within
and across OUI blocks.

In addition to the public, globally unique manufacturer as-
signed MAC address, modern devices frequently use “locally
assigned” addresses [5] which are distinguished by a Univer-
sal/Local bit in the most significant byte. Locally assigned
addresses are used in a variety of contexts including access
point (AP) Virtual Local Area Networks (VLANs), teth-
ered hotspots, and peer-to-peer (P2P). For example, smart
televisions connect to a wireless AP using a public MAC ad-
dress, but also offer P2P connectivity, e.g., “WiFi-Direct” or
“WiFi-Display.” For these P2P connections and other types
of hotspots, a locally assigned MAC is typically derived from
the device’s global MAC address at manufacturer-standardized
interval offsets from the device’s global MAC address.

Locally assigned addresses are also used to create random-
ized addresses as an additional measure of privacy. By using
randomized, locally assigned MAC addresses that change
over time, tracking a wireless device is no longer trivial. For
this reason, we frequently observe 802.11 probe requests that
use locally assigned addresses if the device is not associated
with a known AP. However, as shown in [27] and §4.3, a
device’s WPS UUID-E can often be used to derive its global
MAC from the randomized MAC address.

2.2 802.11 Management Frames
802.11 management frames are unencrypted and gener-

ated by devices automatically to discover networks and ca-
pabilities, associate or authenticate, and disconnect. 802.11
management data provide the crux of our device fingerprint-
ing capability; we collect the following subtypes: probe re-
quests: frames sent by a client to discover available APs
and capabilities; probe responses: frames sent by an AP in
response to a probe request; and beacons: periodic frames
sent by APs to advertise presence and capabilities.

These frames are extensible, and many modern devices use
them to support WPS. In addition to its intended purpose
of wireless authentication, WPS often reveals model-specific
information about a device, e.g. “Asus Nexus 7.”

A recent study found up to 8.6% of client devices broad-
cast WPS fields [27]. We also consider WPS field data from
AP devices, through probe responses and beacons. WiFi Al-
liance P2P standards such as WiFi-Direct and WiFi-Display
are derivatives of WPS and mandate its use. Table 1 shows
example WPS data from a small subset of devices.

2.3 Multicast DNS
A significant subset of 802.11 devices do not utilize WPS.

When WPS is not available, we attempt to leverage the
mDNS protocol. Wireless devices use mDNS for Domain
Name System-Based Service Discovery (DNS-SD) as part of
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a suite of zero configuration network protocols to advertise
network services and capabilities [24] (e.g. Apple’s AirPlay,
AirPrint, and AirDrop services).

Many mDNS messages contain DNS-SD key-value pairs
[24] that uniquely identify the device model of the source.
For instance, as of iOS 8.0, Apple devices send mDNS mes-
sages that contain the dns.txt key of model= and a corre-
sponding model identification value, e.g. model=N61AP cor-
responds to an iPhone 6. Blackberry devices encode model
information using key hwid=, while several Android manu-
facturers use key n=. To resolve these model identification
strings to common names, we utilize a variety of public on-
line resources [14, 21]. Table 2 gives examples of observed
manufacturer-specific implementations.

2.4 Related Work
It is well known that hardware identifiers reveal basic

manufacturer details valuable to device fingerprinting [13,
20]; however, based solely on the MAC address structure it
has not been possible to resolve beyond a device’s manu-
facturer. To date, resolution of MAC addresses to device
model granularity has required analysis of higher level pro-
tocols [20] or resource intensive analysis [11, 8].

In [20, 15] methodologies using higher layer application
protocols for device fingerprinting in support of 802.11 and
Global System for Mobile Communications (GSM) cross-
correlation analysis are evaluated. The authors of [20] high-
light several important issues counter to our goals: i) ap-
plication layer protocols can be encrypted; ii) often require
the device’s user to perform some action in order to initi-
ate the protocol transmission, reducing probability of pas-
sive detection; and iii) model granularity is rarely possible,
specifically with iOS devices. Additionally, the techniques
that rely on HTTP User-Agent strings or hostnames are
prone to inaccuracy, due to the ease with which a user can
obfuscate the fingerprint of the device [1, 3, 4]. Finger-
bank [2], a community-sourced project, attempts to uncover
the manufacturer and model of networked devices based on
a combination of HTTP User-Agents, the order of DHCP
option fields, and the OUI vendor registered with the IEEE.
Altering the fields of interest for our primary methods, fin-
gerprinting WPS and mDNS, would require extensive re-
engineering of the kernel.

The authors of [11] and [8] illustrate the ability to finger-
print a mobile device’s 802.11 device driver and Operating
System (OS) using a timing-based analysis of 802.11 man-
agement frame probe requests. This fingerprinting method
requires a steady stream of packet data from each device.
Relying on a consistent stream of data can be problematic
– in the case of vehicle and pedestrian congestion analysis
a single packet can be the sole source of information. Our
work improves on existing methods by introducing finger-
printing techniques that rely on a single transmitted frame,
regardless of type or encryption method.

Hupperich et al. highlighted the growing need and inher-
ent difficulties in creating a mobile device fingerprinting ca-
pability, and provided a solution involving a set of browser,
OS, hardware, and user behavioral attributes [12]. These
identifiers require the ability to collect the desired attributes
as part of user web activity. Our work requires no such active
process, relying solely on passive techniques. Furthermore,
as previously mentioned, it is difficult to modify the data
fields used by our fingerprinting methods.

Algorithm 1 Frame Processing Strategy

if frame = mgmt && mgmt ext = wps then
if src mac ̸= universal then

src mac ← lookup(wps.uuid e)

src mac, wps.* → database
if frame = WiFi-Direct || WiFi-Display then

src mac, p2p.* → database

else if frame = mdns then
model ← lookup(mdns.boardid)
src mac, mdns.*, model → database

if frame = beacon then
src mac, ssid → database
if mgt tag = apple && apple type = 6 then

src mac, apple.*, ssid → database

3. METHODOLOGY
Over the course of approximately one year, we capture un-

encrypted 802.11 device traffic using inexpensive commodity
hardware and open-source software. We primarily use an LG
Nexus 5 Android phone running Kismet PcapCapture paired
with an AWUS036H 802.11b/g Alfa card. We hop between
the 2.4GHz channels 1, 6, and 11 to maximize coverage.
We additionally employ several Raspberry Pi devices run-
ning Kismet with individual wireless cards each dedicated
to channels 1, 6, and 11. Our corpus spans January 2015
to May 2016 and encompasses approximately 9,000 individ-
ual packet captures. The collection contains over 600 giga-
bytes (GBs) of 802.11 traffic, consisting of over 2.8 million
unique devices across a spectrum of IoT devices.

3.1 Ethical Considerations
Our collection methodology is entirely passive. At no time

did we attempt to decrypt any data, or perform active ac-
tions to stimulate or alter normal network behavior. Our
intent is to show the ease with which one can build a simi-
lar capability to that in this paper with low-cost off-the-shelf
equipment. However, given the nature of our data collection,
we consulted with our Institutional Review Board (IRB).

The primary concerns of the IRB centered on: i) the in-
formation collected; and ii) whether the experiment collects
data “about whom” or “about what.” Because we limit our
collection to 802.11 management frames, mDNS, and other
layer-2 discovery protocols, we do not observe Personally
Identifiable Information (PII). Although we observe IP ad-
dresses, our experiment does not use these layer-3 addresses.
Even with an IP address, we have no reasonable way to map
the address to an individual. Further, humans are incidental
to our experimentation as our interest is in the assignment
of wireless device layer-2 MAC addresses, or “what.” Again,
we have no way to map MAC addresses to individuals.

Finally, in consideration of beneficence and respect for
persons, our work presents no expectation of harm, while
the concomitant opportunity for network measurement and
security provides a societal benefit. Our experiment was
therefore determined to not be human subject research.

3.2 Building the Database
Algorithm 1 provides high-level pseudocode of our pro-

cedure to build a database that maps MAC addresses to
various device models (along with available meta-data). For
802.11 management frames, we find those that contain WPS.
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Table 3: Passively Collected Corpus Statistics
Frame Count %

Management
- Probe Requests 67,086,700 3.25
- Probe Responses 134,639,147 6.53
- Beacons 1,051,269,586 50.98
- w/ WPS 29,121,890 †1.41
Data
- mDNS w/dns.txt packets 806,954 0.04
- mDNS packets 2,503,800 0.12
- Unencrypted data packets (not mDNS) 119,328,932 5.79
- Encrypted 100,191,115 4.86

Other
- Control & Unused Management Frames 586,406,377 28.4

Total 2,062,232,611 100.00
†WPS frames are an inclusive subset of listed Management Frames

We treat locally-assigned MAC addresses specially, as de-
scribed in §3.2.1. Otherwise, we store the source MAC
in a database with the frame’s advertised WPS manufac-
turer, model_name, model_number, and device_name field
values. Additionally, we store the frame’s advertised pri-
mary_device_type.category and subcategory fields. A full
enumeration of WPS device data is available in [29].

If WPS information is not available, we utilize mDNS. We
parse mDNS packets for model identification key-value pairs
(§2.3). If successful, we insert the source address and model
string into the database, along with the device’s common
name derived via public resources [14, 21]. Devices are in a
connected state when implementing mDNS, and as such are
only observed using globally unique addresses.

mDNS, due to its inherent nature as a zero configuration
Local Area Network (LAN) protocol requires the device to
be in an authenticated and associated state. Hence, the
mDNS data we collect is limited to those devices that were
connected to an open 802.11 network. Our collection of
mDNS is thus considerably smaller, allowing inference of
only 10,525 devices as compared to 276,000 for WPS.

3.2.1 Locally Assigned MACs
Many devices, at one point or another, will use a locally

assigned MAC address for P2P communication, hotspot mode,
VLANs, or MAC address privacy.

• Privacy: We observe devices randomizing their MAC
addresses when not associated with a WiFi network – the
Motorola Nexus 6 and Huawei Nexus 6P, for example, switch
to a predetermined local OUI while randomizing the lower
three bytes. Regardless of the implementation details, many
devices continue to send probe requests containing WPS
information using this random, locally assigned MAC ad-
dress. Using the method described in [27], we obtain the
globally unique MAC via a pre-computed lookup table of
the device’s Universally Unique IDentifier-Enrollee (UUID-E),
found in the WPS uuid_e field.

• P2P: We identify devices offering P2P capabilities via
beacon frames that contain special extension tags (9 for
WiFi-Direct and 10 for WiFi-Display [29]). We gather the
source address of the device, the P2P.device_id (the locally
assigned P2P MAC), the vendor extension tags, and Ser-
vice Set IDentifier (SSID) advertised in the beacon frame.
The SSID, while oftentimes user-configurable, generally de-
faults to a string identifying the manufacturer or model of
the device to aid the user in discovering their WiFi-Direct
devices. Last, we find the advertised device_name, a field
that generally contains descriptive device information (a

Table 4: WPS-Based Device Category
Device Category Total Number

PC 6803
Notebook 11

Amazon Tablets 2240
Input Device - Mouse 1

Printer 2501
Camera 596

Access Point 219796
Television/Display 326
Multimedia Device 287

Smart phone 36361
Audio Devices - Music Player 1

Gaming Systems 101

TV may advertise its model number, while a Roku media
device provides a descriptive string).

• Apple hotspots: Apple APs and devices acting as
hotspots can be identified by the use of a standardized Ven-
dor Specific wlan_mgt.tag.oui field (0x0017F2 for Apple).
The tag.oui.type subfield is used to differentiate between
traditional APs (e.g., AirPort models) and client devices
operating in hotspot mode, which advertise service using a
locally assigned MAC address. Although beacon and probe
frames from these devices do not contain model informa-
tion, the OUI of the global MAC address is transmitted
in a subfield of the Vendor Specific OUI field. We replace
the locally assigned OUI used in hotspot mode with the
derived OUI in order to identify the device’s actual global
MAC address.

3.3 Predicting Models from MACs
Using 802.11 management frames and unencrypted mDNS

packets, we build a database that maps MAC addresses to
a device manufacturer and model. To make an inference for
an unknown device, we simply query the database for all
known results that match at least the OUI of the device in
question. We then perform a lexicographical comparison of
the results to find the closest matching manufacturer and
device. Further, we show the absolute distance between the
two MAC addresses is a useful measure (§4.4). While simple,
the size and coverage of our database allows us to make
accurate inferences as we show next.

4. RESULTS AND ANALYSIS
In this section, we first present a broad overview of our

802.11 corpus and then analyze the allocation of MAC ad-
dresses by vendors, highlighting common practices and ex-
ceptions. Next, we validate our inference methodology against
both a ground-truth set of devices as well as a third-party
public data capture. We conclude with a 5-fold cross-validation
test, using our own dataset to evaluate the effectiveness of
our closest match methodology.

4.1 802.11 Corpus Statistics
As summarized in Table 3, our dataset contains over two

billion 802.11 frames, of which approximately half are bea-
cons. Probe requests and responses together comprise ap-
proximately 200M frames, of which approximately 15% con-
tain WPS data. Considering only globally-unique MAC
addresses, we observe 49,428 total client MAC addresses
(distinguished by the device sending a probe request) using
WPS, and 833,670 clients not implementing WPS. Among
APs (or client devices acting as APs, e.g., hotspots), sending
probe response or beacon frames we observe 227,428 distinct
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Table 5: Top 10 Manufacturers - Clients
Indicates Strong/Weak WPS Inference Capability

WPS Count % non-WPS Count %

LGE 11,184 22.60 Apple 231,214 44.36
Ralink 4,279 8.64 Samsung 48,617 9.33
Motorola 3,260 6.58 Murata 48,246 9.26
HTC 3,256 6.57 Intel 25,734 4.95
Prosoft 2,234 4.50 HP 15,287 2.94
Amazon 2,222 4.49 Microsoft 13,949 2.68
Huawei 1,905 3.83 Ezurio 12,385 2.38
Asus 1,659 3.34 Epson 6,839 1.32
ZTE 1,619 3.25 Lexmark 5,289 1.01
Alco 1,036 2.10 Sonos 4,542 .09
Other 16,859 34.10 Other 109,271 20.96

Table 6: Top 10 Manufacturers - APs
Indicates Strong/Weak WPS Inference Capability

WPS Count % non-WPS Count %

Netgear 58,302 25.64 Cisco 73,144 12.30
Cisco 31,978 14.06 Ericsson 46,110 7.76
Linksys 22,440 9.87 Apple 40,105 6.75
Technicolor 19,295 8.48 Actiontec 39,350 6.62
Belkin 12,896 5.67 Ruckus 33,858 5.70
Arris 7,913 3.48 HP 27,600 4.64
ASUSTek 7,770 3.42 Aruba 23,429 3.94
Actiontec 7,163 3.15 Ubiquiti 18,126 3.05
Dlink 5,729 2.52 Cisco-Linksys 15,778 2.65
Broadcom 5,615 2.47 Mitsumi 12,523 2.10
Other 48,327 21.24 Other 264,483 44.49

MAC addresses whose frames include WPS data, and 1.79M
without. Interestingly, some devices were observed includ-
ing WPS data in some management frames, but at other
times, not. 5,711 distinct client MAC addresses transmitted
at least one management frame with WPS fields and at least
one without; 204,353 unique AP MAC addresses fell into the
same category. This behavior is common in APs that use
WPS in probe responses, but not beacons.

WPS contains fields for the manufacturer to specify the
general device category (e.g., PC, camera, etc.), allowing
us to roughly characterize the population as summarized in
Table 4. However, the device category advertised in WPS
fields can be unintuitive or incorrect. For example, the Mi-
crosoft Xbox One gaming system sends “Ralink” in the cor-
responding manufacturer WPS field (the manufacturer of
the chipset) and a PC device type. Similarly, Roku devices
advertise as APs rather than multimedia devices.

We collect over 222M data frames, of which ∼45% are
encrypted. We ignore non-mDNS and encrypted frames per
our IRB agreement. 32% of the mDNS packets contain the
dns.txt field, allowing us to identify the models of 9,849
Apple, 184 BlackBerry, and 417 Android devices.

Tables 5 and 6 reveal that Apple is the most prevalent
client (∼44%) and third most prevalent AP (∼7%) man-
ufacturer that does not implement WPS. We obtain the
non-WPS statistics simply based on the OUI [13] for the
set of management frames where no WPS data is included.
We therefore use mDNS features to characterize Apple and
other devices that do not use WPS.

Locally assigned MAC addresses are observed in over 166M
frames (8%). Because locally assigned MAC addresses are
used for P2P and privacy reasons (§3.2.1), it is difficult to as-
certain exactly how many distinct devices transmitted these
frames. Instead, we first consider devices using randomized
local MACs that include a WPS UUID-E. From UUID-E
identifiers that we can reverse using pre-computed tables,
we find that the majority fall into seven distinct manufac-
turers: Motorola (502), Huawei (460), Samsung (259), Sony
(91), HTC (71), Blackberry (36), and MediaTek (25). The

Figure 1: CDF of OUI Fragmentation

most commonly observed models are the Motorola Nexus 6
(490), Huawei 6P (460), HTC Nexus 9 (71), Sony Xperia
Z5 (69), Samsung S5 (38), BlackBerry Priv (36), and the
Samsung Galaxy Note 4 (26).

Next, we inspect the WPS fields among P2P frames. We
observe 5,182 uniqueWiFi-Direct enabled devices, with 2,176
of those dual enabled for WiFi-Display. The majority of
these devices are various Roku streaming media players (2,260)
and Amazon Fire TV (148). A variety of HP, Samsung, and
Epson printer models span 1,659 devices, with 302 Vizio and
282 Sony Bravia televisions.

Last, we observe 2,609 unique iPad and iPhone devices
operating as hotspots. We calculate their global MAC using
the technique described in §3.2.1. Two distinct bins for the
offset values are present: an offset of either 0x02 or 0x22 in
the first byte of the MAC address.

4.2 MAC Address Allocation
We next seek to characterize MAC allocation strategies

employed in practice. There is no general pattern between
manufacturers; some assign the entire OUI to only one model,
while others assign smaller ranges to dozens of distinct mod-
els. The size and number of distinct ranges assigned to a
model also follows no general rule. We highlight several ex-
emplar manufacturers here.

We observe 2,956 unique OUIs. Inspection of the WPS
data reveals that the 2,956 OUI contain ∼5,000 OUI to man-
ufacturer pairings, and ∼10,000 OUI-model. This increase
in pairings results from cases where the OUI is owned by the
chipset manufacturer, further highlighting the value of fine-
grained inference. Using mDNS, we see only Apple products
within the OUI space allocated to Apple. We observe 352
distinct Apple OUIs and 1,028 unique OUI to model pairs.

In order to visualize MAC address allocation within an
OUI, we plot occurrences of observed devices with a given
OUI in different colors by model on an x-y plane, where the
y-axis corresponds with the fourth byte of the MAC, and
the x-axis with the fifth byte. To highlight the density of
the MAC addresses we observe, we alter the gradient be-
tween each pair of sample points, such that the midpoint
between two observed MAC addresses has minimum alpha
value. We normalize the gradients to the largest distance
between any two MAC addresses with the same model in-
formation; in this way, the largest distance between any two
MAC addresses will appear white, indicating the lowest den-
sity of observation. This coloring also provides a visual in-
dication of confidence in the inferred intervals – the most
intense-colored portions indicate regions in which we have
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Figure 2: Observed Models in 24:A2:E1 (Apple)

the highest confidence that these ranges of the OUI space
will be of that particular model; conversely, in the whitest
section of a contiguous block of MAC address to model ob-
servations, we have relatively lower confidence that a MAC
address observed will correspond to the same model. Space
within the OUI for which we have no observations or infer-
ences based on a series of MAC addresses associated with
the same model appear black.

In general, we find that MAC address allocation is non-
random across vendors and OUIs. To quantify the amount
of randomness present in model assignment of MAC ad-
dresses, we calculate the amount of “fragmentation” present
in each OUI (Figure 1). We calculate fragmentation as fol-
lows: first, we find the number of MAC address triplets in
lexicographical order in which the first and third MAC ad-
dress correspond to the same model, while the second MAC
is not. We then divide this count by the total number of
triplets. Very little fragmentation appears in our database
– approximately 80% of WPS and Apple mDNS OUIs have
no fragmented MAC address-model triplets.

4.2.1 Example: Apple
Our first example is Apple’s 24:A2:E1 OUI which con-

tains four models: two models of the iPad Mini 2 (cellular
and WiFi-only versions), the iPhone 5c, and a 13”MacBook
Pro. Figure 2 graphically displays our inferred ranges for
these models within the OUI, with black intervals indicat-
ing portions with no observations. All OUI plots in this work
(like Figure 2) are in color should be viewed with color.

Based on the start and end of each contiguous block of
MAC address observations, we infer that the largest part of
the OUI is dedicated to the iPhone 5c, with a block con-
sisting of over 8.7 million MAC addresses (52% of the OUI).
The 3.06M MAC addresses allocated to the WiFi version
of the iPad Mini 2 are spread among a contiguous block of
3.03M addresses and a much smaller block of 31K addresses
in a different portion of the OUI. ∼2.4M addresses are al-
located to the cellular version of the iPad Mini 2, and a
small range (∼50K) is devoted to the “MacBookPro 9,2” (a
mid-2012 13” laptop). Interestingly, the iPad Mini 2 and
iPhone 5c were released in late 2013, over a year after the
release of this MacBook Pro, illustrating that allocations
evolve over time. Based on the MAC address-model pairs

Figure 3: Observed Models in 8C:3A:E3 (LGE)

Figure 4: CDFs of Inferred Block Sizes for WPS-Using
Manufacturers and Apple

in our database, we find that we can make no inference for
∼15% of the 24:A2:E1 OUI, indicated by the black portions
of Figure 2.

4.2.2 Example: LG Electronics
In stark contrast to our inferred allocation of the Apple

OUI is the 8C:3A:E3 OUI, registered to LG Electronics. LG
manufactures many 802.11-enabled devices; in this partic-
ular OUI we observe twenty-one distinct models of smart-
phones. Our inference of the MAC address ranges indicated
spans only 9% of the OUI – large continuous blocks of models
are rarely observed; those that do, span only several bytes
in the fourth byte of the MAC address. Many observed
data points alternate models of smartphone, thereby allow-
ing us to make no inference beyond a single 256-MAC ad-
dress pixel as to ranges assigned to particular models. For
instance, the LGL39C, a prepaid device sold by Tracfone,
appears four times in our database, but never without an-
other model of phone between two data points. We therefore
are confident only in the particular five-byte point in which
the LGL39C appears. It bears noting that some OUI of
LG phones contain multiple models within the same 256-
MAC address, five-byte pixel as well, implying that some
manufacturers allocate multiple devices within a single five-
byte range of MAC addresses. Such micro-allocations sig-
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Figure 5: CDF of Number of Blocks per OUI (all
manufacturers)

Figure 6: Observed Models in C0:C1:C0 (Cisco)

nificantly increase the difficulty for a passive observer to
accurately infer the ranges of MAC addresses assigned to
individual models. In general, we observe more fine-grained
MAC address ranges for manufacturers using WPS (like LG)
than we do for Apple, from whom we gather model informa-
tion through mDNS. Figure 4 illustrates the relative differ-
ence in inferred block sizes, comparing all 58 Apple OUIs for
which we have data against the top 58 OUIs in which we de-
rive model-level detail from WPS. In Figure 5, we plot the
distribution of number of inferred blocks per OUI. While
∼60% of OUIs have only one inferred block, a nontrivial
percentage (∼10%) have 20 or more.

4.2.3 Example: Cisco
Allocations of contiguous blocks to distinct device mod-

els are present among AP manufacturers as well. Figure 6
shows the inferred allocation of the C0:C1:C0 OUI owned by
Cisco, with 17 models of APs. Visually, our plot indicates
that assignment of addresses is performed more granularly
by Cisco than Apple. As opposed to the five distinct blocks
in §4.2.1, we find 248 distinct contiguous ranges dispersed
throughout the OUI. The Linksys E1000 appears most fre-
quently, with 54 distinct ranges of addresses that transmit
management packets with WPS. Further, the blocks associ-
ated with the E1000 also make up the largest allocation to
any single device (2.4M addresses). Two devices appear in

Figure 7: Observed Models in 90:21:81 (Shanghai Huaqin)

a single x-y grid square – the Cisco E100t, a network card,
and Linksys E2100L, a wireless router, giving these two de-
vices the smallest inferred ranges within the OUI. Overall,
we infer that about 60% of the OUI has been allocated, with
a mean of ∼41K addresses per block.

4.2.4 Example: Spanning OUIs
To highlight the complexity and diversity of address allo-

cation policies, we present two interesting examples: manu-
facturers that split MAC address ranges assigned to a single
model across multiple OUIs, and OUI that contain devices
produced by multiple manufacturers.

To illustrate the assignment of the same device model
throughout the ranges of several OUI, we examine another
Apple-owned OUI that contains iPhone 5c devices, as in
§4.2.1. The 224 addresses in 0C:3E:9F are split between the
GSM versions of the iPhone 5c and 5s, with 33% and 53%
of the OUI respectively allocated to each. iPhone 5c GSM
devices are found in ten Apple OUIs; including the global
variant, twelve OUIs contain some version of the iPhone
5c. This model is by no means unique in its distribution
across multiple OUIs – our collection has discovered iPhone
6 Plus devices in three OUIs – nor is allocating a single
device to several OUIs unique to Apple. For example, we
observe Huawei’s Nexus 6P in nine distinct OUIs. We spec-
ulate that the rationale behind dividing a single device to
multiple OUIs may be one of efficiency (that is, maximiz-
ing utilization of previously-purchased OUI space) or possi-
bly indicative of a logical assignment of an OUI to discrete
manufacturing locations.

Further, we present an illuminating counterexample to the
conventional wisdom that an OUI is sufficient to identify the
manufacturer of the device. Figure 7 is a visualization of the
90:21:81 OUI where we observe seven distinct manufactur-
ers: Acer, Archos, BLU Mobile, i-Mobile, LAVA, Micro-
max, and Oplus with twenty-eight address ranges assigned
to twelve device models. Because we have been able to in-
fer address blocks for only ∼23% of the OUI, it is likely
that more models and manufacturers occupy the OUI space.
This finding is likely attributable to the OUI owner (Shang-
hai Huaqin Telecom) producing 802.11 chipsets for many
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Figure 8: Observed Models in 00:0E:8F (Sercomm Corp.)

manufacturers of low-cost devices. Whereas fingerprinting
of devices based on the OUI would identify a single man-
ufacturer, our technique finds granular discrete ranges for
unique manufacturers and models within this OUI.

4.2.5 Example: IoT
We also apply our OUI allocation inference to IoT devices.

Figure 8 highlights an interesting result, the 00:0E:8F OUI
registered to Sercomm Corp. While portions of the OUI
are allocated for APs, we observe a wireless repeater (ZTE
H560N) and five types of 802.11-enabled cameras, the Sen-
sormatic OC810, OC821D, RC8025, and RC8021 models,
and iCamera 1000. The iCamera, in particular, appears
121 times in twenty-seven discrete blocks. We note that a
thief conducting wireless reconnaissance of a potential target
could easily determine whether or not one of these cameras
was present using our fine-grained fingerprinting.

Next, we show two use cases where using identifiers passed
through WPS or mDNS can be augmented with other, more
commonly used methods of fingerprinting devices. Figure 9
shows the 48:A9:D2 OUI of Wistron Neweb Corp. Evalua-
tion of the byte allocation using WPS reveals four devices,
one Sharp and three Panasonic Vierra televisions; there are
no results from the analysis of mDNS in this OUI. To more
thoroughly evaluate the allocation structure, we augment
our analysis by manually inspecting beacon frames from de-
vices in this OUI. We find a common and consistent SSID
syntax used by Audi vehicle WiFi systems. Furthermore,
a large contiguous block is allocated to such vehicle-based
WiFi systems.

These results highlight several observations; i) the ability
to fingerprint diverse IoT device allocations; ii) structure
can be augmented with inspection of common SSIDs; and
therefore iii) multiple methods of identifying byte allocation
structure exist and are complimentary.

4.3 Validation on CRAWDAD Sapienza Data
To evaluate our technique, we validate against a third-

party corpus of publicly available probe requests in CRAW-
DAD from Sapienza [6]. This dataset consists of approxi-
mately 11M probes requests on behalf of 160,000 unique de-

Figure 9: Observed Models in 48:A9:D2 (Wistron Neweb)

vices. The Sapienza CRAWDAD corpus differs from ours in
the location and time period during which it was obtained
– our data is primarily from the Eastern Seaboard of the
United States from 2015-2016, while the Sapienza data is
from three months in 2013 throughout Italy.

The Sapienza corpus has anonymized the 802.11 probe
MAC addresses, SSIDs, and other identifiers. To obtain de-
vice MAC addresses, we therefore take the subset of probe
requests containing WPS fields that have both a distinguish-
ing manufacturer and model field, as well as a UUID-E that
we can invert using the technique described in [27]1. Of
the 2,674 unique UUID-Es, we map 1,832 back to the true
global MAC addresses. Finally, we remove 86 addresses
with only “SAMSUNG ELECTRONICS” as the manufac-
turer and “SAMSUNG MOBILE”as the model, as they pro-
vide no detail on the precise model or device. Thus, we per-
form validation on a test set of 1,746 real MAC addresses
from 63 distinct OUIs with corresponding manufacturer and
model labels from the WPS probe advertisements.

We use the technique of §3.3 to query for each of the
MAC addresses in the Sapienza corpus, and compare our
inferred manufacturer and model against the manufacturer
and model in the corpus’ WPS frame. We find that our infer-
ences correctly predict the correct manufacturer and model
for 1,419 of the 1,746 addresses, an 81.3% accuracy.

We make three observations regarding the ∼19% of in-
correct predictions. First, our database returns no results
(that is, cannot match at least the first three bytes of the
queried MAC) only four times. Three of these database
“misses” are attributable to Samsung Galaxy Tab tablets,
a device that we have observed in the wild infrequently.
The fourth is a mobile phone sold in Korea, the Pantech
Vega R3 (IM-A850K), which we have not observed in our
corpus. Similarly, other devices that we mispredict are ob-
served rarely in our collection, or not at all. For example,
the mobile phone manufacturer Pulid appears twice in our
dataset, but in different OUIs from the Pulid phone present

1We have notified the corpus authors of the requirement to
also anonymize UUID-E.
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Table 7: Validation on Ground-Truth Devices
Device Precision Recall F-score

Apple
- iPhone (iOS 7.0-) .000 .000 0
- iPhone (iOS 8.0+) .909 .909 .909
- iPad/iPod (iOS 8.0+) .857 .900 .877
- All iOS 8.0+ Devices .892 .906 .898
- OS X .771 1.00 .870
- Apple TV .750 1.00 .857
- iOS 8.0+ and OS X .850 .934 .890
- All .715 .838 .772

Samsung
- Galaxy S4 and prior .684 .892 .774
- Galaxy S5 to current .475 .863 .613
- Galaxy Tablets .250 .071 .110
- All .598 .761 .670

in the Sapienza dataset, while we never observe the manu-
facturer “Jiayu.” Finally, many of the incorrect predictions
are, in fact, temporally “close,” meaning that the release
date of the device closely matches our prediction. For in-
stance, the Sapienza corpus contains a large number of Sam-
sung Galaxy S III smartphones under various carrier-defined
model names (e.g., GT-I9300). While our system correctly
guesses the model for the majority of Samsung Galaxy S III
devices, the most common incorrect predict is a variant of
the Samsung Galaxy Note II. Given that these two phones
were released three months apart, and that the Galaxy Note
II is based on the hardware design of the Galaxy S III, even
this incorrect inference provides useful context about the
device.

4.4 Validation on Known Device Dataset
As a second method of validation, we evaluate our fin-

gerprinting against a set of known, ground-truth devices.
We collect 140 Apple and 139 Samsung devices, and manu-
ally obtain layer-2 addresses from their settings menus. The
devices range across device types (phones, TVs, tablets),
life-cycles (2007-2016), and operating systems (iOS 1-9.3,
Android OS 1.5-6.0). While our set of known devices is sig-
nificantly smaller than in the CRAWDAD Sapienza corpus,
we definitively know ground-truth without relying on WPS-
based device types. As such, the Apple devices specifically
evaluate the power of the mDNS derived allocations in our
database.

Again, using our technique in §3.3, we predict each de-
vice’s manufacturer and model and compare against the true
manufacturer and model. Additionally, we record the num-
ber of matching bytes for the lexicographically closest match
in our database, along with the protocol (WPS or mDNS)
that provides the closest match.

Table 7 provides our inference precision, recall, and F-
score (the harmonic mean of the precision and recall). Pre-
cision evaluates when we provide a prediction is that pre-
diction correct, where recall factors in the ability for our
inference model to make a prediction. In cases where we
have no three byte match we fail to make any inference.

We do not correctly identify any of the iOS 7.0 devices.
The distinction between iOS 7.0 and 8.0+ is significant, but
easily explained. The iOS model derivation process relies on
the inclusion of a dns.txt key-value pair within the mDNS
packet, which is only sent by models running iOS 8.0 or
later.

The majority of devices that are either incorrectly iden-
tified or produce no match even at the base OUI level are

Table 8: Ground-Truth Inference – Offset Comparison

Device Best Guess Byte Match Offset

iPad 2 iPad 2 3 2
iPad 2 iPad 2 3 31
iPad 2 iPad 2 3 11
iPad 3 iPad 3 3 2

iPad Air iPad Air 3 2
iPad Air iPad Air 3 1
iPad Air 2 iPad Air 2 3 7
iPad Air 2 iPad Air 2 3 1
iPad Air 2 iPad Air 2 4 18
iPad Air 2 iPad Air 2 3 6
iPad Mini iPad Mini 3 5
iPad Mini iPad Mini 3 1
iPad Mini 3 iPad Mini 3 4 58
iPad Mini 4 iPhone 6 3 104
iPad Mini 4 iPhone 6 3 186
iPad Mini 4 iPhone 6 3 94
iPad Pro
iPad Pro

simply due to a lack of observations in our passive data
collection. For example, we observe no iPad Pros in our
collection, and therefore currently have no insight into the
allocation structure – Table 8 depicts this scenario.

For an arbitrary MAC address queried against our database,
we define the match offset as the absolute difference of the
(n + 1)th byte of the test MAC address and the closest
database match, where both MAC addresses match through
n bytes (n ≥ 3). We observe that the accuracy of the result
increases as the offset of the match decreases. For exam-
ple, in Table 8, the three iPad Mini 4 devices have a three
byte (OUI) match with corresponding high offset values (in
decimal: 104, 186, 94). The highest offset value of any suc-
cessfully inferred iPad model is 31.

We obtain a lower overall accuracy as compared to our
Sapienza validation test which, interestingly, contains a large
percentage (∼60%) of Samsung devices. For Samsung mod-
els common to the time period of the Sapienza CRAWDAD
collection (Galaxy S4 and earlier), we achieve similar finger-
printing performance. We posit that accuracy difference is
due to several recent trends we observe in the use of WPS
and mDNS by Samsung devices. For older models (circa
2013), our dataset contains 630 WPS Samsung devices, and
only 30 Galaxy S5 or newer. An additional 250 Samsung
devices transmit the WPS fields only while using a locally
assigned MAC address.

As a corollary, we examine the benefit associated with
increased data collection for our methodology. We plot our
successes and failures for the Sapienza CRAWDAD dataset
and our own Apple and Samsung devices according to the
density of the inferred block in which they fall. That is, if a
test MAC address falls within an inferred block of size 2048
and 64 instances of the block’s model within this range, we
say the block has density 0.03125. On the other hand, if a
test MAC address falls outside of a block, we say the inferred
block has 0 density.

Figure 10 displays the CDFs of the block densities for
our correct and incorrect model inferences. Only 45% of
Sapienza correct inferences fall outside of a model block from
our database, but are closer to the edge of a block of the
correct model than an incorrect model. Conversely, 55% of
correct inferences fall inside a block of nontrivial density.
Of the Sapienza CRAWDAD MAC addresses for which we
made incorrect model inferences, 85% fall outside of any
block and hence have a block density of 0. Figure 10 also
shows the CDF of the block densities of our correct Apple
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Figure 10: Relationship between observation density and
inference ability

(mDNS) and Samsung (both WPS and mDNS) inferences
for which ground truth is known. Less than 40% of correct
Apple inferences fall outside a block, while the majority have
densities between 2 × 10−6 and 8 × 10−6. We do not plot
our incorrect Apple inferences for our known devices – only
one incorrect inference was made with a nonzero density.
Overall, our results demonstrate that when a MAC address
falls inside a block, a higher density indicates an increased
likelihood that our guess will be correct.

4.5 Cross-Validation
Last, we conduct a 5-fold cross-validation using our own

dataset to evaluate the effectiveness of our closest match
methodology. We partition both our WPS and Apple mDNS
collections into five randomly chosen sets of equal size. For
all MAC addresses in each set, we find the closest matching
MAC address in any of the other four sets by both simple
distance (interpreting MAC addresses as 48-bit integers) and
lexicographical distance. Each set is used once as validation
(test) data against the remaining four sets (training); we
then compute the arithmetic mean of the accuracies across
the five folds.

The WPS 5-fold cross-validation yields an average accu-
racy of 90.95% using lexicographical distance and 91.16%
with simple distance. The simple distance closest match
strategy outperforms closest lexicographical distance, though
only by 0.2%, suggesting that some manufacturers may pre-
fer allocating MAC address blocks across 4-byte boundaries
rather than assigning “prefixes” to individual models. This
cross-validation accuracy represents an ∼10% improvement
over the accuracy we obtain when testing our model against
the older and geographically distant CRAWDAD Sapienza
dataset in §4.3 – and demonstrates the utility in obtaining
as many disparate training samples as possible.

Our Apple mDNS 5-fold cross-validation also yields an im-
provement over the performance of our model using our set
of ground-truth devices. With the simple distance closest
match metric, we correctly identify the iOS 8.0+ or OS X
(iOS 7 and below do not include model-identifying informa-
tion in mDNS messages) device with an average accuracy
of 88.16% across all five validation folds. The lexicographi-
cal closest matching method is accurate 88.20% of the time.
Both methods represent a ∼3% improvement over our vali-
dation using the set of Apple devices for which we were able
to obtain ground-truth.

In summary, our cross-validation demonstrates an approx-
imately 90% success rate in correctly identifying manufac-
turer and model based on a MAC address alone. Cross-
validation minimizes the effect of evaluating our model against
non-US devices (a weakness of our validation in §4.3), and
functions as a more robust device validation set than is pos-
sible for individuals to collect (a weakness of §4.4.)

5. CONCLUSIONS
Our data suggests that MAC address assignment policy

is nonrandom – vendors of smartphones and tablets, APs,
and IoT devices allocate contiguous blocks from their OUIs
to individual device models. However, we find no “stan-
dard” MAC address allocation strategy. While Apple OUIs
are divided into several large chunks for a small number of
devices, other manufacturers (e.g. LG and Cisco) allocate
small blocks to a larger number of device models.

Our rich dataset, consisting of over two billion 802.11
frames and approximately 3,000 OUIs, allows us to make
device model granular predictions for unknown MAC ad-
dresses. Not only do our inferences improve the granularity
of MAC-based fingerprinting, we also show that allocation
policies are sufficiently varied and complex as to cause sim-
ple fingerprinting techniques to be inaccurate. For instance,
we discover devices that span multiple OUIs as well single
OUIs that contain devices from multiple vendors – as many
as seven different manufacturers (§4.2.4).

To validate our ability to form model-level predictions, we
test our inferences against a ground-truth set of 279 devices
where we achieve an F-score of 0.85 to 0.91 for Apple devices
(depending on specific model) and an F-score of 0.61 and
0.77 for Samsung devices. We then evaluate our inferences
against a public corpus of 802.11 probe requests. In this
third-party dataset, collected on a different continent than
our own corpus, we achieve 81% accuracy, with most of the
errors being relatively close, i.e. due to re-branded carrier-
defined model names.

5.1 Future Work
We leave four items for further investigation. First, dur-

ing the course of our 802.11 data collection, we observed sev-
eral link-layer discovery protocols leaking manufacturers and
models. These protocols, including Cisco Discovery Proto-
col (CDP), MicroTik Network Discovery Protocol (MNDP)
and others, could provide the basis for an analogous MAC
to device model mapping for wired infrastructure.

Second, we hypothesize that MAC addresses can provide
a geographic indication of where the wireless device was pur-
chased or originated. With our continued data collection, we
hope to provide insight into the locality of particular ranges
of addresses within an OUI. Such a “geo-distribution” of
MAC addresses and models could provide valuable analyt-
ics to industry and government, providing the ability to in-
fer what region of the world devices (and their owners, by
proxy) are from. We also conjecture that MAC addresses are
likely assigned in a sequential manner (or semi-sequential,
accounting for Bluetooth MAC address assignment) within
device model blocks, indicating a relative manufacture date.

Our findings naturally beg the question of how one might
evade model-level fingerprinting. Not only can the MAC
address be spoofed, provided that the WPS UUID-E is cal-
culated to match, an adversary might attempt to poison our
mapping database by advertising inaccurate data in WPS
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management frames or mDNS packets. Future work should
consider ways in which to make the inferred address map-
pings more robust to such attacks.

Finally, we encourage manufacturers to adopt a more fine-
grained allocation of MAC addresses to particular devices.
As we see in §4.2.2 and §4.2.3, the smaller the allocated
ranges of MAC addresses are to individual models, the more
complex and difficult it is to infer the structure of an OUI
(and hence, decrease the inference power of our database).
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