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Motivation

Motivation

▶ Wemay be on the verge of a revolution that will transform the field of cryptology.

Immediate impact on asymmetric cryptology

▶ The two problems that underpin virtually all commercial asymmetric cryptography
will become tractable if sufficiently capable quantum computers are built.

▶ It is conceivable that such computers may be built within the next 10-25 years.a

aIt is very difficult to make predictions at this point in time. Opinions diverge in academia. As a
cryptographer one must err on the side of caution and assume the above worst case scenario.



When do algorithms need to be replaced?

deferral period of∆ years

t − ∆ t

time

The algorithm becomes operational.

The algorithm becomes susceptible to practical cryptanalytical attacks.

Use of the algorithm to protect confidentialitymust cease.

All use of the algorithm must cease.

Deferral periods and confidentiality

▶ An algorithm that is used to provide confidentiality must resist cryptanalysis for as
long as the data that it has been used to protect is to remain confidential.
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The bit

b

0 | 1

The bit

▶ The smallest information-carrying classical unit is the bit.

▶ A bit may assume two discrete states denoted zero and one.



The qubit

| 0 ⟩ c0 | 0 ⟩ + c1 | 1 ⟩ | 1 ⟩

The qubit

▶ The smallest information-carrying quantum unit is the qubit.

▶ A qubit is a normalized superposition of two basis states. More specifically

|Ψ ⟩ = c0 |0 ⟩+ c1 | 1 ⟩ where c0, c1 ∈ C and | c0 |2 + | c1 |2 = 1.



Reading a bit
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Reading a bit

▶ A bit may be read without side effects to yield zero or one.



Observing a qubit

| 0 ⟩

P = | c0 |2

c0 | 0 ⟩ + c1 | 1 ⟩

P = | c1 |2

| 1 ⟩

Observing a qubit

▶ Observing a qubit collapses the superposition to one of the basis states, yielding a
single bit of classical information. The probability of collapsing to | j ⟩ is | cj |2.



Quantum systems

| 0 = 002 ⟩ | 1 = 012 ⟩ | 2 = 102 ⟩ | 3 = 112 ⟩

A system of two qubits

▶ A system of 2 qubits is in a superposition of 22 = 4 basis states.



Quantum systems

| 0002 ⟩ | 0012 ⟩ | 0102 ⟩ | 0112 ⟩

| 1002 ⟩ | 1012 ⟩ | 1102 ⟩ | 1112 ⟩

A system of three qubits

▶ A system of 3 qubits is in a superposition of 23 = 8 basis states.



Quantum systems

· · ·

A system ofm qubits

▶ A system ofm qubits is in a superposition of 2m basis states.

|Ψ ⟩ =
2m−1∑

j= 0

cj | j ⟩ cj ∈ C
2m−1∑

j= 0

| cj |2 = 1

▶ When observed the probability of collapsing to | j ⟩ is | cj |2.



Quantum entanglement

= +

| 002 ⟩ | 112 ⟩

|Ψ ⟩ = 1√
2
|002 ⟩ +

1√
2
| 112 ⟩

Quantum entanglement

▶ Quantum systems that cannot be independently described are said to be entangled.

▶ The ability of quantum systems to be entangled gives rise to quantum speedups.



Quantum operators

X X

Operating on qubits

▶ The quantum system is evolved by applying operators to qubits.

▶ Only unitary operators are admissible. There are universal sets of unitary operators
using which any other unitary operator may be expressed up to precision.



Quantum algorithms and circuits
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Quantum algorithms and circuits

▶ Quantum algorithms are compiled to quantum circuits. A circuit consists of a
concrete sequence of operations and measurements.

▶ The circuit depth, and number and type of operations, determine the complexity.



Quantum computations

j

P = | cj |2

|Ψ ⟩ =
1

√
2n

2n − 1∑

j= 0

| j ⟩

j

P = | cj |2

|Ψ ⟩ =
1

√
2

(
| 7 ⟩ + | 12 ⟩

)

initialize
system

evolve
system

measure
system

post-process
output
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7
12
7
7
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solution

Quantum computations

▶ The goal of a quantum algorithm is to increase the amplitudes of some set of target
states that provide information on the solution of a given problem.

▶ The quantum system must remain coherent from initialization to measurement.
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Impact of quantum computing on cryptology

Quantum algorithms for cryptanalysis

▶ The current understanding of the implications of quantum computing is limited.

Grover’s algorithm [Grover96]

▶ Grover’s algorithm provides a quadratic speedup for exhaustive search.

Shor’s algorithms [Shor94]

▶ Shor’s algorithms solve the integer factoring and abelian discrete logarithm
problems in polynomial time using only a polynomial number of qubits.

▶ Asymmetric algorithms based upon these problems must be replaced in time.
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Shor’s algorithms

factoring n bit integer N via order finding in G = ⟨g⟩ ⊆ Z∗
N
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Shor’s algorithms
Our specialized algorithms [EH17, Ekerå17, Ekerå18]

factoring n bit RSA integer N via short DLP in G = ⟨g⟩ ⊆ Z∗
N
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Shor’s algorithms
Our specialized algorithms [EH17, Ekerå17, Ekerå18]

factoring n bit RSA integer N via short DLP in G = ⟨g⟩ ⊆ Z∗
N
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Shor’s algorithm
Solving EC-DLP on E(Fp)

Size Classical security Quantum operations Circuit depth Logical qubits
⌈log2 p⌉ in bits in Toffoli operators

192 96 1.85 · 234 1.70 · 234 1754
256 128 1.04 · 236 1.91 · 235 2330
384 192 1.86 · 237 1.71 · 237 3484
521 260 1.14 · 239 1.05 · 239 4719

* Qubit count and operator count as given by Roetteler et al. [RNSL17] for E(Fp) on short
Weierstrass form accounting for (a) qubit recycling by Mosca and Ekert [ME99] and (b)
tradeoffs by Ekerå [Ekerå18]. The estimates assume an ideal quantum computer and do
not account for the overheads caused by quantum error correction.



Shor’s algorithm
Solving RSA IFP

Size Classical security Quantum operations Logical qubits
⌈log2 pq⌉ in bits in Toffoli operators

1024 80 1.16 · 237 2050
2048 110 1.26 · 240 4098
3072 132 1.13 · 242 6146
4096 150 1.36 · 243 8194
8192 202 1.48 · 246 16386

* Qubit count 2n+ 2 and operator count 2n3(32.01 log2 n− 49.29) as extrapolated from
Häner et al. [HRS17] accounting for optimization by (a) Mosca and Ekert [ME99] and (b)
Ekerå and Håstad [EH17, Ekerå17]. The estimates assume an ideal quantum computer and
do not account for error correction. Classical security estimated as in FIPS 140-2 IG.



Shor’s algorithm
Solving FF-DLP

Quantum operations
Size Classical security General DLP Schnorr or short DLP Logical qubits
n = ⌈log2 p⌉ in bits in Toffoli ops. in Toffoli operators

1024 80 1.13 · 238 1.59 · 235 2050
2048 110 1.23 · 241 1.23 · 238 4098
3072 132 1.10 · 243 1.65 · 239 6146
4096 150 1.35 · 244 1.74 · 240 8194
8192 202 1.47 · 247 1.28 · 243 16386

* Qubit count 2n+ 2 and operator count 2n3(32.01 log2 n− 49.29) as extrapolated from Häner et al.
[HRS17] accounting for optimizations by (a) Mosca and Ekert [ME99] and (b) Ekerå and Håstad
[EH17, Ekerå17, Ekerå18]. The estimates assume an ideal quantum computer and do not account
for error correction. Classical security estimated as in FIPS 140-2 IG.
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Ongoing standardization efforts
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time

NSA IAD announcement

NIST announcement and process outline

NIST calls for proposals

NIST submission deadline

NIST accepts 69 proposals for 1st round

(23 signature schemes, 59 KEMs)
NIST had 82 proposals in total

1st NIST standardization conference

NIST announces 2nd round

2nd NIST standardization conference

NIST announces 3rd round or presents finalists

NIST presents draft standards

Standardization efforts

▶ Standardization efforts are ongoing. It take time to develop and adopt standards.



Summary and conclusion

Summary and conclusion

▶ The two problems that underpin virtually all commercial asymmetric cryptography
will become tractable if sufficiently capable quantum computers are built.

▶ It is conceivable that such computers may be built within the next 10-25 years.

Mitigating actions for asymmetric cryptology

▶ Prioritize taking mitigating actions for algorithms used to provide confidentiality.
▶ Migrate to a hybrid solution with a proven classically secure algorithm and a
post-quantum secure algorithm. Adopt symmetric keying whenever feasible.

▶ Use approved COMSEC systems or seek expert advise from the Swedish NCSA.



Summary and conclusion

Swedish COMSEC and Swedish cyber defence

▶ Swedish COMSEC systems consitute an integral part of the Swedish cyber defence.

▶ COMSEC systems approved by the Swedish Armed Forces must be used to protect
the confidentiality of information classified with respect to national security.




