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Shor’s algorithms

factoring n bit integer N via order finding in G = ⟨g⟩ ⊆ Z∗
N
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n operations

computing d given g and x = [ d ] g in G = ⟨g⟩ of order r ∼ 2n
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Shor’s algorithms
Our specialized algorithms [EH17, Ekerå17, Ekerå18]

factoring n bit RSA integer N via short DLP in G = ⟨g⟩ ⊆ Z∗
N

|j
⟩

|k
⟩

n/
2
+
n/
2s

n/
2s

tq
ub

its

Q
FT

Q
FT

� � [
a]
g
⊙
[−
b]
x
⟩
[a] g[a] g[a] g[a] g[a] g[a] g[a] g[a] g[a] g

n/2+ n/2s

[−b] x[−b] x

n/2s

H

H|0
⟩

|id
en
tit
y
in

G
⟩

|j
⟩

|k
⟩

n
+
n/
s

n/
s

tq
ub

its

Q
FT

Q
FT

� � [
a]
g
⊙
[−
b]
x
⟩

[a] g[a] g[a] g[a] g[a] g[a] g[a] g[a] g[a] g[a] g[a] g[a] g[a] g[a] g[a] g[a] g[a] g

n+ n/s

[−b] x[−b] x

n/s

computing d given g and x = [ d ] g in G = ⟨g⟩ of order r ∼ 2n

H

H

|0
⟩

|0
⟩

|id
en
tit
y
in

G
⟩



Shor’s algorithms
Our specialized algorithms [EH17, Ekerå17, Ekerå18]

factoring n bit RSA integer N via short DLP in G = ⟨g⟩ ⊆ Z∗
N
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Shor’s algorithm
Solving EC-DLP on E(Fp)

Size Classical security Quantum operations Circuit depth Logical qubits
⌈log2 p⌉ in bits in Toffoli operators

192 96 1.85 · 234 1.70 · 234 1754
256 128 1.04 · 236 1.91 · 235 2330
384 192 1.86 · 237 1.71 · 237 3484
521 260 1.14 · 239 1.05 · 239 4719

* Qubit count and operator count as given by Roetteler et al. [RNSL17] for E(Fp) on short
Weierstrass form accounting for (a) qubit recycling by Mosca and Ekert [ME99] and (b)
tradeoffs by Ekerå [Ekerå18]. The estimates assume an ideal quantum computer and do
not account for the overheads caused by quantum error correction.



Shor’s algorithm
Solving RSA IFP

Size Classical security Quantum operations Logical qubits
⌈log2 pq⌉ in bits in Toffoli operators

1024 80 1.16 · 237 2050
2048 110 1.26 · 240 4098
3072 132 1.13 · 242 6146
4096 150 1.36 · 243 8194
8192 202 1.48 · 246 16386

* Qubit count 2n+ 2 and operator count 2n3(32.01 log2 n− 49.29) as extrapolated from
Häner et al. [HRS17] accounting for optimization by (a) Mosca and Ekert [ME99] and (b)
Ekerå and Håstad [EH17, Ekerå17]. The estimates assume an ideal quantum computer and
do not account for error correction. Classical security estimated as in FIPS 140-2 IG.



Shor’s algorithm
Solving FF-DLP

Quantum operations
Size Classical security General DLP Schnorr or short DLP Logical qubits
n = ⌈log2 p⌉ in bits in Toffoli ops. in Toffoli operators

1024 80 1.13 · 238 1.59 · 235 2050
2048 110 1.23 · 241 1.23 · 238 4098
3072 132 1.10 · 243 1.65 · 239 6146
4096 150 1.35 · 244 1.74 · 240 8194
8192 202 1.47 · 247 1.28 · 243 16386

* Qubit count 2n+ 2 and operator count 2n3(32.01 log2 n− 49.29) as extrapolated from Häner et al.
[HRS17] accounting for optimizations by (a) Mosca and Ekert [ME99] and (b) Ekerå and Håstad
[EH17, Ekerå17, Ekerå18]. The estimates assume an ideal quantum computer and do not account
for error correction. Classical security estimated as in FIPS 140-2 IG.
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Ongoing standardization efforts
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NSA IAD announcement

NIST announcement and process outline

NIST calls for proposals

NIST submission deadline

NIST accepts 69 proposals for 1st round

(23 signature schemes, 59 KEMs)
NIST had 82 proposals in total

1st NIST standardization conference

NIST announces 2nd round

2nd NIST standardization conference

NIST announces 3rd round or presents finalists

NIST presents draft standards

Standardization efforts

▶ Standardization efforts are ongoing. It take time to develop and adopt standards.



Summary and conclusion

Summary and conclusion

▶ The two problems that underpin virtually all commercial asymmetric cryptography
will become tractable if sufficiently capable quantum computers are built.

▶ It is conceivable that such computers may be built within the next 10-25 years.

Mitigating actions for asymmetric cryptology

▶ Prioritize taking mitigating actions for algorithms used to provide confidentiality.
▶ Migrate to a hybrid solution with a proven classically secure algorithm and a
post-quantum secure algorithm. Adopt symmetric keying whenever feasible.

▶ Use approved COMSEC systems or seek expert advise from the Swedish NCSA.



Summary and conclusion

Swedish COMSEC and Swedish cyber defence

▶ Swedish COMSEC systems consitute an integral part of the Swedish cyber defence.

▶ COMSEC systems approved by the Swedish Armed Forces must be used to protect
the confidentiality of information classified with respect to national security.




