Lessons Learned From Previous SSL/TLS Attacks
A Brief Chronology Of Attacks And Weaknesses

Christopher Meyer, Jorg Schwenk
Horst Gortz Institute for IT-Security
Chair for Network and Data Security
Ruhr-University Bochum
{christopher.meyer, joerg.schwenk}@rub.de

Abstract—Since its introduction in 1994 the Secure Socket
Layer (SSL) protocol (later renamed to Transport Layer Security
(TLS)) evolved to the de facto standard for securing the
transport layer. SSL/TLS can be used for ensuring data
confidentiality, integrity and authenticity during transport. A
main feature of the protocol is its flexibility. Modes of operation
and security aims can easily be configured through different
cipher suites. During its evolutionary development process
several flaws were found. However, the flexible architecture of
SSL/TLS allowed efficient fixes in order to counter the issues.

This paper presents an overview on theoretical and practical
attacks of the last 15 years, in chronological order and four
categories: Attacks on the TLS Handshake protocol, on the
TLS Record and Application Data Protocols, on the PKI
infrastructure of TLS, and on various other attacks. We try to
give a short ”Lessons Learned” at the end of each paragraph.

Keywords-SSL, TLS, Handshake Protocol, Record Layer,
Public Key Infrastructures, Bleichenbacher Attack, Padding
Oracles

I. INTRODUCTION

In 1994, Netscape' addressed the problem of securing
data which is sent over ’the (TCP) wire” in the early days
of the World Wide Web, by introducing the Secure Sockets
Layer protocol version 2. Over the decades SSL gained
improvements, security fixes and from version 3.1 on a new
name - Transport Layer Security* - , but the basic idea
behind the protocol suite remained the same. A key feature
of SSL/TLS is its layered design consisting of mainly two
blocks:

Handshake protocol. This is an Authenticated Key Ex-
change (AKE) protocol for negotiating cryptographic secrets
and algorithms.

Record and Application Data protocol. This is an
intermediate MAC-then-PAD-then-Encrypt layer positioned
between the application and the TCP network layer.

In addition, error messages are bundled in the Alert pro-
tocol, and the one-message ChangeCipherSpec protocol
which signalizes the switch from unencrypted to encrypted
mode.

Uhttp://www.netscape.com
Zhttp://datatracker.ietf.org/wg/tls/

A complete communication example (SSL 3.0/TLS 1.x)
illustrating the handshake phase finally leading to the appli-
cation data phase is given in Figure 1.

Client Server
ServerHello
ServerKeyExchange
CertificateRequest
ServerHelloDone
ClientKeyExchange
CertificateVerify
ChangeCipherSpec
Ch CipherSpec
Apllication Data Apllication Data
Explanation | Handshake Protocol) (cn ipherSpec Protocol |
[optional Handshal g] [Apllication Data Protocol]

Figure 1: SSL/TLS communication example

Due to space limitations a comprehensive introduction
to SSL/TLS is skipped. A detailed view on SSL/TLS is
provided by Eric Rescorla in [1].

Many attacks of theoretical and practical nature have
been found and partly exploited. Ongoing research improves
recent attacks and aims to prove security or finding further
security related flaws.

In the following attacks are discussed in four groups:
attacks on the TLS Handshake protocol, the TLS Record
and Application Data Protocols, attacks on the TLS Public
Key Infrastructure, and various other attacks. In each of the
four groups, they are presented in chronological order.We
tried to formulate a very short “’lessons learned” sentence
after each attack.

II. ATTACKS ON THE HANDSHAKE PROTOCOL

1) Cipher suite rollback: The cipher-suite rollback at-
tack, discussed by Wagner and Schneier in [2] aims at

http://www.netscape.com
http://datatracker.ietf.org/wg/tls/

limiting the offered cipher-suite list provided by the client
to weaker ones or NULL-ciphers. An Man-in-the-middle
(Mitm) attacker may alter the ClientHello message sent
by the initiator of the connection, strips of the undesirable
cipher-suites or completely replaces the cipher-suite list with
a weak one and passes the manipulated message to the
desired recipient. The server has no real choice - it can either
reject the connection or accept the weaker cipher-suite. An
example scenario is illustrated in Figure 2.

|! Server

=))
S Client AL Man-in-the-middie

ClientHello |

client_version
random
session_id
cipher_suites[
SSL_RSA_...,
SSL_DHE_...

ClientHello

client_version
random
session_id
> |cipher_suites[
SSL_NULL_WITH_NULL_NULL

—

1
1 comrpession_methodsl...]
comrpession_methodsl...]

ServerHello ‘

server_version

random

session_id

cipher_suite =
SSL_NULL_WITH_NULL_NULL

comrpession_method = ...

Figure 2: Example scenario for the cipher-suite rollback
attack - based on Source: [2]

This problem was fixed with the release of SSL 3.0, by
authenticating all messages of the Handshake protocol, by
including hash value of all messages sent and received by
the client (the server, resp.) into the computations of the
ClientFinished (ServerFinished, resp.) message. However,
this hash value explicitly excludes messages of the Alert
and ChangeCipherSpec protocols, leaving room for
future attacks.

Lesson learned: This attack illustrates that it is crucial
to authenticate what exactly reached the desired target and
what was sent. Theoretically, this idea was put forward in
[3] with the concept of matching conversations.

2) ChangeCipherSpec message drop: This simple but
effective attack described by Wagner and Schneier in [2]
was feasible in SSL 2.0 only. During the handshake phase
the cryptographic primitives and algorithms are determined.
For activation of the new state it is necessary for both
parties to send a ChangeCipherSpec message. This
messages informs the other party that the following com-
munication will be secured by the previously agreed param-
eters. The pending state is activated immediately after the
ChangeCipherSpec message is received.

An attacker located as Mitm could simply drop the
ChangeCipherSpec messages and cause both parties to
never activate the pending states. An example is illustrated
in Figure 3.

According to Wagner and Schneier the flaw was inde-
pendently discovered by Dan Simon and addressed by Paul
Kocher. The author’s recommendation is to force both parties
to ensure that a ChangeCipherSpec message is received

&

Client “ Man in the middle Server
ServerHello
Certificate
ServerKeyExchange
CertificateRequest
ServerHelloDone
ClientKeyExchange
CertificateVerify
ChangeCipherSpec | — X
Apllication Data Apllication Data
Explanation [Handshake Protocol]If"‘ CipherSpec Prot 'I
[optional H]] [Apllication Data Protocol]

Figure 3: Example scenario for the ChangeCipherSpec mes-
sage drop attack - based on Source: [2]

before accepting the Finished message. According to
RFC 2246 [4] TLS 1.0 enforces this recommendation.
Lesson learned: See Section II-1.

3) Key exchange algorithm confusion: Another flaw
pointed out by Wagner, Schneier in [2] is related to a feature
concerning temporary key material. SSL 3.0 supports the use
of temporary key material during the handshake phase (RSA
public keys or DH public parameters) signed with a long
term key. A problem arises from a missing type definition of
the transfered material. Each party implicitly decides, based
on the context, which key material is expected and decodes
accordingly. More precise, there is no information on the
type of the encoded key material. This creates a surface for
a type confusion attack.

This attack is, to the best of our knowledge, strictly
theoretical until time of writing. Figure 4 gives an attack
sketch where a client is fooled into establishing a RSA based
key agreement while at the same time performing DHE
(ephemeral Diffie-Hellman key exchange) with the server.
According to the author’s, SSL 3.0b1 hinders this attack.

Lesson learned: This attack highlights the need for
context-free message structures: Misinterpretation of a
received message should be avoided by providing explicit
information on the content.

4) Version rollback: Wagner and Schneier described
in [2] an attack where a ClientHello message of SSL
3.0 is modified to look like a ClientHello message of
SSL 2.0. This would force a server to switch back to the
more vulnerable SSL 2.0.

As a countermeasure (proposed by Paul Kocher), the
SSL/TLS version is also contained in the PKCS encoded

. S 3
_‘_J Client “ Man in the middle | server

P I

client_version client_version

random random
session_id

session_id
cipher_suites[

SSL_DHE_RSA. ...
1

pession_i .|

ServerHello ServerHello
server_version server_version
random random
session_id session_id
cipher_suite = SSL_RSA_ cipher_suite = SSL_DHE_RSA...
pession_method = ... pession_method = ...
ServerDHParams{
DH_p
DH_g
DH_Ys
}
ServerHelloDone
Cl ‘ ClientKeyExchange ‘
exchange_keys = exchange_keys =
Encryp! { | — | Diffiel {—
encldh_g](pre_master_secret) DH_Yc
} }
ChangeCipherSpec
ChangeCipherSpec

[Protocol] [Changeclphers;)ec Pmocol]

Figure 4: Example scenario for the key exchange algorithm
confusion attack - based on Source: [2]

Block Type | Padding | Separation Byte
00 02 00

Encapsulated Data
PreMasterSecret

Table I. PKCS#1 v 1.5 encoded PreMasterSecret

PreMasterSecret of the ClientKeyExchange mes-
sage (when RSA-based cipher suites are used). The coun-
termeasure is sufficient, since SSL 2.0 only supports RSA-
based key exchange.

Lesson learned: This attack shows that backward
compatibility is a serious security threat: The
countermeasure described in Section II-1 against
modification of single messages does not help, since
it was not present in Version 2.0!

5) Bleichenbacher Attack on PKCS#1: In 1998 Daniel
Bleichenbacher presented in [5] an attack on RSA based
SSL cipher suites. Bleichenbacher utilized the strict structure
of the PKCS#1 v1.5 format and showed that it is possi-
ble to decrypt the PreMasterSecret in an reasonable
amount of time. The PreMasterSecret in a RSA based
cipher suites is a random value generated by the client
and sent (encrypted and PKCS #1 formatted) within the
ClientKeyExchange. An attacker eavesdropping this
(encrypted) message can decrypt it later on by abusing the
server as a decryption oracle. The format of PKCS #1 v1.5
is given in Table I.

Bleichenbacher’s attack utilized a) the fixed structure and
b) a known weakness of RSA to Chosen Ciphertext Attacks
(cf., [6]). The idea is to blind the original ciphertext, pass
it to the decrypter and finally separate the blinding value.

In the following C' denotes the ciphertext, P the plaintext,
e RSA’s public exponent, d the private exponent and n the
modulus. RSA encryption is defined as C = P° mod n
and decryption as P = C? mod n.

Blinding sketch

1) Choose invertible integer s

2) Blind known ciphertext C: C' = s°C' mod n

3) Let the oracle decrypt C': P’ = C'? mod n

4) Separate s from P:P = P’s~' mod n

Depending on the validness of a received PKCS structure
the processing at server side differs. In particular, SSL
specified to send different error messages for different errors
during processing (invalid padding, invalid MAC, ...). With
this information one can build an oracle as given in Figure 5.

true,
false,

Figure 5: PKCS oracle

if x is PKCS conforming
otherwise

Opkcs(z) = {

By the use of this oracle it is possible to decrypt the
PreMasterSecret by continuous blinding the eaves-
dropped, encrypted message. Based on the oracle’s responses
the intervals in which possible values may lie can be
narrowed, until only a single value is left.

Lesson learned: Bleichenbacher’s attack was possible
because error messages sent by the server could be used as
an oracle revealing partial information about the plaintext.
Thus apparently negligible pieces of information such as
distinguishable errors, which inform the counterpart on the
exact error cause, can be leveraged by an attacker to break
security. As a consequence it is necessary to reveal as little
information as possible on the internal state of the protocol
processing. Especially error messages are a valuable source
of information for attackers.

6) The rise of timing based attacks: Brumley and Boneh
outlined in [7] a timing attack on RSA based SSL/TLS.
The attack extracts the private key from a target server
by observing the timing differences between sending a
specially crafted ClientKeyExchange message and re-
ceiving an Alert message inducing an invalid formatted
PreMasterSecret. Even a relatively small difference
in time allows to draw conclusions on the used RSA
parameters. Brumley’s and Boneh’s attack of Brumley and
Boneh is only applicable in case of RSA based cipher-
suites. Additionally, the attack requires the presence of a
fine resolute clock on the attacker’s side. The authors were
able to successfully attack OpenSSL.

OpenSSL’s implementation relies on application of the
Chinese Remainder Theorem (CRT) in order to enhance
computation. CRT is generally not vulnerable to Paul
Kocher’s timing attack (cf., [8]), but additionally to the
CRT optimization OpenSSL uses optimizations such as

sliding-window exponentiation which in turn heavily relies
on Montgomery’s reduction algorithm for efficient modulo
reduction. Montgomery’s algorithm and others require multi-
precision multiplication routines. OpenSSL implements two
different algorithms to perform such multiplications: Karat-
suba algorithm and an unoptimized algorithm. For these
algorithms the integer factors are represented as sequences
of words of a predefined size. Due to efficiency reasons
OpenSSL uses Karatsuba if words with equal number of
words are multiplied and the “standard” algorithm otherwise.
According to the authors the "normal” algorithm is generally
much slower than Karatsuba, resulting in a measurable
timing difference. But due to a peculiarity of Montogmery’s
algorithm (an additional extra reduction in some cases) the
optimizations of Montgomery and Karatsuba counteract one
another. This prevents a direct timing attack.

Moreover, the authors’ attack determines the dominant effect
at a specific phase and leverages the differences. The authors
define their algorithm as a kind of binary search for the lower
prime of the RSA modulus n (n = pq).

As a countermeasure the authors suggest, as the most
promising solution, the use of RSA blinding during decryp-
tion. Blinding uses a a random value r and computes p = r°c
mod n before decryption (p : plaintext, ¢ : ciphertext, n :

RSA modulus, e : public exponent). The original plain-
text can be recovered by decrypting and dividing by r:

_ (r®e)? modn _ (r*p°)? modn _ rp modn
b= T = T = T .

The attack was significantly improved in 2005 by Aci-
icmez, Schindler and Koc in [9].

Lesson learned: Brumley and Boneh demonstrated
that designers have to take special care on building
implementations with nearly equal response times for each
conditional branch of message processing.

7) Improvements on Bleichenbacher’s attack: The re-
searchers Klima, Pokorny and Rosa not only improved
Bleichenbacher’s attack (cf. II-5) in [10], but were able to
defeat a countermeasure against Bleichenbacher’s attack.

Breaking the countermeasure A countermeasure
against Bleichenbacher’s attack is to generate a random
PreMasterSecret in any kind of failure and continue
with the handshake until the verification and decryption of
the Finished message fails due to different key mate-
rial (the PreMasterSecret differs at client and server
side). Additionally, the implementations are encouraged to
send no distinguishable error messages. This countermea-
sure is regarded as best-practice. Moreover, because of a
different countermeasure concerning version rollback at-
tacks (cf., I1I-4) the encrypted data includes not only the
PreMasterSecret, but also the major and minor version
number of the negotiated SSL/TLS version. Implementations
should check for equality of the sent and negotiated protocol
versions. But in case of version mismatch some implemen-
tations again returned distinguishable error messages to the

sender (e.g. decode_error in case of OpenSSL). It is
obvious that an attacker can build a new (bad version) oracle
from this, as shown in Figure 6.

true, if version number is valid
false, otherwise

OBadVersion (C*) = {

Figure 6: Bad Version Oracle

With a new decryption oracle Opyqversion Klima, Poko-
rny and Rosa were able to mount Bleichenbacher’s attack,
in spite recommended countermeasures are present.

Improving Bleichenbacher’s attack on PKCS#1 Ad-
ditionally to the resurrection of Bleichenbacher’s attack
the authors could improve the algorithm for better perfor-
mance. These optimizations included redefinition of interval
boundaries for possible PKCS conforming plaintexts. These
improvements are based on advanced knowledge gained
from the SSL/TLS specification:

e A PreMasterSecret is exactly 46 bytes longer

e« The PreMasterSecret is prefixed with two version

bytes

« Padding bytes are unequal to 00

e A PKCS conforming plaintext M; contains a null-

byte separating the padding from the payload data.
The length of the padding is known in advance (2
type bytes, £ — 51 padding bytes, a single null byte
as a separator, 2 bytes for the version number and 46
PreMasterSecret bytes)
Even tighter adjustment is possible, since the used protocol
version is known in advance, revealing another 2 bytes.

Another optimization was made to the original algorithm
by introducing a a new method on how to find suitable
blinding values. The authors call this the Beta method.

As a last optimization Klima, Pokorny and Rosa suggested
to parallelize steps of Bleichenbacher’s algorithm, which
speeds up the attack.

Lesson learned: Countermeasures against one
vulnerability (cf. II-4) may lead to other vulnerabilities.

8) ECC based timing attacks: At ESORICS® 2011
Brumley and Tuveri [1!] presented an attack on ECDSA
based TLS connections. As to their research only OpenSSL
seemed to be vulnerable.

The problem arose from the strict implementation of an
algorithm for improving scalar multiplications, which ECC
heavily relies on, such as e.g., point multiplication. The
implemented algorithm for performing such scalar multipli-
cations, known as the Montgomery power ladder [12] (with
improvements by Lépez and Dahab [13]), is timing resistant
from a formal point of view, but from implementational point
of view contained a timing side-channel. The developers
optimized the performance of the algorithm by reducing the
repetitions of internal loops, leading to a timing side channel.

3https://www.cosic.esat kuleuven.be/esorics2011/

https://www.cosic.esat.kuleuven.be/esorics2011/

When arranging the integer of a scalar multiplication (k) in
a binary tree (leading zeros stripped) the tree’s height is
[log(k)] — 1 (—1 since the first bit is expected to be 1, thus
ignoring the first level of the tree). This implies that the
runtime of the algorithm is ¢([log(k)] — 1), where ¢ denotes
some constant time of the algorithm. As a result, timing
measurements enabled drawbacks on the multiplier.

Brumley and Tuveri combined this side channel with
the lattice attack of Howgrave-Graham and Smart [14]
to recover secret keys. For this to work they identified
that creating ECDSA signatures relies on scalar multipli-
cation. ECDSA signatures are generated in TLS/SSL when
ECDHE_ECDSA cipher-suites are used. The authors mea-
sured the time between the ClientHello message and
the arrival of the ServerKeyExchange message during
the handshake phase. The latter message contains an ECDSA
signature over a digest, consisting of relevant parts necessary
for further establishment of cryptographic material. As this
digital signature can only be created on-the-fly, and not in
advance, an adversary is able to measure runtime of the
vulnerable scalar multiplication function.

Lesson learned: Side channels may come from
unexpected sources.

9) Even more improvements on Bleichenbacher’s at-
tack: In [15] Bardou, Focardi, Kawamoto, Simionato, Steel
and Tsay significantly improved Bleichenbacher’s attack
(cf., 1I-5) far beyond the previous improvements of Klima,
Pokorny and Rosa (cf., 1I-7). Bardou et al. fine-tuned the
algorithm to perform faster and with lesser oracle queries.
Additionally, the authors combined their results with the
previous improvements and were able to significantly speed
up Bleichenbacher’s algorithm.

Lesson learned: Attacks improve and adjust as time
goes by. It is necessary to observe research on attacks (even
if they are patched yet).

10) ECC-based key exchange algorithm confusion at-
tack: In [16] Mavrogiannopoulos, Vercauteren, Velichkov
and Preneel showed that the key exchange algorithm con-
fusion attack by Wagner and Schneier, discussed in II-3,
can also be applied to ECDH. According to the authors,
their attack is not feasible yet, due to computational limita-
tions. But, as already discovered with other theoretical only
attacks, it may be a question of time when the attack is
enhanced to be practical or the resources for computation
increase. As discussed by Wagner and Schneier, the main
problem remains the lack for a content type field indicating
the algorithm type of the contained data - which implicitly
indicates how to decode the message.

Lesson learned: See 11-3

III. ATTACKS ON THE RECORD AND APPLICATION DATA
PROTOCOLS

The attacks presented in this section are enabled by
weaknesses of the Record or Application Data Protocol
and/or the structure of record frames.

A. Attack discussion

1) MAC does not cover padding length: Wagner and
Schneier pointed out in [2] that SSL 2.0 contained a ma-
jor weakness concerning the Message Authentication Code
(MAC). The MAC applied by SSL 2.0 only covered data
and padding, but left the padding length field unencrypted.
This may lead to message integrity compromise.

Lesson learned: Not only since the introduction of
padding oracles by Vaudenay (cf., III-A2) each single
bit of information should be considered useful for an
attacker. Thus, information should be integrity protected
and authenticated to keep the attack vector as small as
possible.

2) Weaknesses through CBC usage: Serge Vaudenay

introduced a new attack class, padding attacks, and forced
the security community to rethink on padding usage in
encryption schemes [17].
The attacks described by Vaudenay rely on the fact that
block encryption schemes operate on blocks of fixed length,
but in practice most plaintexts have to be padded to fit
the requested length (a multiple of the block length). After
padding, the input data is passed to the encryption function,
where each plaintext block (of length of the block size)
is processed and chained according to the Cipher Block
Chaining Mode (CBC) scheme. The CBC mode chains
consecutive blocks, so that a subsequent block is influenced
by the output of its predecessor. This allows an attacker
to directly influence the decryption process by altering the
successive blocks. For convenience, Figure 7 gives a short
recap of the CBC en-/decryption mode.

Encryption

Decryption

[ramex |

[romea | [romen |

Figure 7: Encryption/Decryption in CBC Mode

Vaudenay builds a decryption oracle out of the re-
ceiver’s reaction on a ciphertext in case of valid/invalid
padding. In the case of SSL/TLS the receiver may send
a decryption_failure alert, if invalid padding is en-
countered. The padding oracle is defined in Figure 8.

true, if C is correctly padded

OPadding(C) = { false, otherwise

Figure 8: Padding oracle
By the use of such an oracle and clever changes on the
ciphertext an attacker is able to decrypt a ciphertext without
knowledge of the key. The optional MAC ensuring message
integrity of SSL/TLS does not hinder this attack, since MAC
creation takes place before the message is padded. Thus, the
padding is not covered by the MAC.

Lesson learned: Although the attack is not directly
applicable to standard SSL/TLS (since Fatal errors imme-
diately invalidate the session and accordingly the key mate-
rial), it is applicable to DTLS (as discussed later in III-A11).
Thus, this theoretical attack should not be ignored. Again,
error messages can form the base for decryption oracles.

As a solution, SSL defines equal error messages for
padding and decryption errors. But there still remains some
room for timing attacks (due to conditional execution paths
in the SSL stack). The CBC mode leveraged the attack, so
the usage of weak schemes like CBC should be rethought
and replaced by more secure, authenticated encryption
schemes such as Galois/Counter Mode (GCM) [18].

3) Information leakage by the use of compression:
In [19] Kelsey described an information leak enabled by
a side-channel based on compression. This is in absolute
contrast to, what the author calls “folk wisdom”, that ap-
plying compression leads to a security enhanced system.
Kelsey showed that it adds little security or, in the worst
case, is exactly the other way around, due to the fact that
compression reveals information on the plaintext.

Cryptosystems aim at encrypting plaintexts in a way that
the resulting ciphertext reveals little to no information on the
plaintext. Kelsey observed that by the use of compression a
new side-channel arises which could be used to gain hints
on the plaintext. Therefor he correlates the output bytes of
the compression to the input bytes and makes use of the fact
that compression algorithms, when applied to the plaintext,
reduce the size of the input data.

Compression algorithms encode redundant patterns in in-
put data to shorter representations and substitute each occur-
rence with the new representation. Different input strings of
the same length are likely to compress to strings of different
length. Kelsey used this observation to gain knowledge about
the plaintext. Kelsey advices that also timing issues have
to be taken into consideration, since compression as an
additional step requires additional processing time.

Although this attack was not exploited at that time it lead
to the development of Rizzo and Duong’s C.R.I.LM.E. tool
(cf. II-A12) in 2012.

Lesson learned: Kelsey’s observation is interesting
since it breaks with the “folk wisdom” that applying
compression leads to security enhanced systems.
Compression may lead to hidden side-channels (compression
rate, timing, etc.). It seems that optimizing for performance
in accordance with security is hazardous. Performance
optimizations should be proved against possible side-
channels and skipped or adjusted (which in turn may
counterbalance the performance gain).

4) Intercepting SSL/TLS protected traffic: In [20] Can-
vel, Hiltgen, Vaudenay and Vuagnoux extended the weak-
nesses presented by Vaudenay (cf., III-A2) to decrypt a
password from an SSL/TLS secured IMAP session.

Canvel et al. suggested three additional attack types based
on Vaudenay’s observations:

Timing Attacks The authors concluded that a successful
MAC verification needs significantly more time compared to
a premature abortion caused by an invalid padding. This ob-
servation relies on the fact that performing a padding check
is less complex than performing cryptographic operations as
they are necessary to verify a MAC.

Multi-session Attacks The basic idea of this attack type
requires a critical plaintext to be present in each TLS
session (such as e.g., a password) and that the corresponding
ciphertext is known to the attacker. Due to the nature of
security best-practice the corresponding ciphertexts look
different every session, since the key material for MAC and
encryption changes every session. Therefor, it is advanta-
geous to check if a given ciphertext ends with a specific
byte sequence (which should be identical in all sessions)
instead of trying to guess the whole plaintext.

Dictionary attacks Leveraged by the previous attack type
which checks for a specific byte sequence of the plaintext
this attack aims at checking for byte sequences included in
a dictionary.

A successful attack against an IMAP server was per-
formed and the password used by the LOGIN command
could be recovered. As a recommendation the authors pro-
pose to change the processing order when encrypting. The
MAC should also cover the padding, which implies the order
PAD-then-MAC-then-Encrypt.

Lesson learned: Tt may be advantageous to change
the order of processing to PAD-then-MAC-then-Encrypt,
but this in turn may leverage other attacks and has to
be carefully considered and accurately specified before
implementation. The order of processing makes a big
difference and should payed special attention.

5) Chosen-Plain-text Attacks on SSL: Gregory Bard
observed in [21] an interesting detail concerning Initializa-

tion Vectors (IVs) of SSL messages. As can be seen from
Figure 7 every en- and decryption in CBC mode depends on
an IV. Every new plaintext (consisting of multiple blocks)
should get its own, fresh and independent IV.

The problem with SSL is that, according to the SSL
specification, only the IV of the first plaintext is chosen
randomly. All subsequent IVs are simply the last block of the
previous encrypted plaintext. This is absolutely in contrast
to cryptographic best-practice.

Bard observed that an attacker willing to verify a guess
if a particular block has a special value and is in possession
of an eavesdropped ciphertext can easily check her guess.
An attacker could mount an attack if she knows exactly
which block is of interest. This knowledge is not as strong
as it seems to be, since the strict format of e.g., https://
requests contains fixed header fields which are known in
advance. Additionally, the previous block must be known
which is mostly no problem. If the second precondition is
fulfilled determining the IV used for this encryption remains
an easy task, since it is the last block of the preceding
message. Finally, an attacker has to find a way to inject
data to the first block of the subsequent message.

The vulnerability was at the same time discovered by
Bodo Moller who described the weakness in detail in a
series of emails on an IETF mailing-list*. In this series
Moller described a fix which was later used by the OpenSSL
project: Prepending a single record with empty content,
padding and MAC, to each message.

As potential fixes for the IV vulnerability Bard recom-
mended the use of pseudo random IVs or dropping CBC
and switching to a more secure encryption mode. TLS
1.1 follows the first recommendation by introducing an
IV field into the GenericBlockCipher structure which
encapsulates encrypted data.

The practicability of this attack was proven by Bard two
years later (cf. III-A6).

Lesson learned: The weakness outlined by Bard is a
good example for ignoring security best-practices for the
sake of simplicity.

6) Chosen-Plain-text Attacks on SSL reloaded: The
attack by Bard discussed in III-A5 was revisited by Bard in
a publication in 2006 [22]. Overall Bard addressed the same
topics as before, but provided an attack sketch how to exploit
this problem. Bard described a scenario in which an attacker
uses a Java applet, executed on the victim’s machine, to
mount the attack as described in III-AS. As a precondition
it is necessary to access a common used SSL tunnel. Bard
refers to HTTP-Proxy or SSL based tunneling scenarios.

It is outlined that this scenario does not work if com-
pression is used. Many preconditions have to be fulfilled in
order to be able to successfully attack a SSL connection

“http://www.openssl.org/~bodo/tls-cbc.txt

(the author states that it is “challenging but feasible™).
However, Bard gives an example for block-wise-adaptive
chosen plaintext attacks targeting SSL. Rizzo and Duong
proved in III-A8 that Bard’s attack scenario is applicable,
in a slightly different implementation (by using JavaScript
instead of Java applets). The described attack was adopted
and adjusted in their B.E.A.S.T. tool (cf. III-A8).
The vulnerability is fixed with TLS 1.1, since it dictates
the use of explicit IVs.
Lesson learned: Not only the protocol has to be
considered when evaluating security - the interplay between
different layers and applications is relevant, too.

7) Traffic analysis of TLS: George Danezis highlighted
in an unpublished manuscript [23] ways how an attacker may
use the obvious fact that minimal information, despite the
connection is TLS protected, remains unencrypted to analyze
and track traffic. In particular, Danezis used unencrypted
fields, part of every TLS message, of the TLS Record Header
for analysis. Figure 9 shows an encrypted TLS Record
containing unencrypted header fields and encrypted payload.

struct {
ContentType type;
ProtocolVersion version;
uintl6 length;
select (CipherSpec.cipher_type) {
case stream: GenericStreamCipher;
case block: GenericBlockCipher;
} fragment;
} TLSCiphertext;

Figure 9: TLS Cipher-text Record - Source: RFC 2246 [4]

As can be seen the fields type, version and length
remain always unencrypted - even in an encrypted record.
The fields are necessary for correct record decoding. In [2]
the authors already criticized the presence of such unauthen-
ticated and unencrypted fields. RFC 2246 is also aware of
this information leak and advices to take care of this:

” Any protocol designed for use over TLS must
be carefully designed to deal with all possible
attacks against it. Note that because the type and
length of a record are not protected by encryption,
care should be take to minimize the value of traffic
analysis of these values.”

- Source: RFC 2246 [41]

Danezis identified several information leaks introduced by
these unencrypted fields:

« Requests to different URLs may differ in length which

results in different sized TLS records.

« Responses to requests may also differ in size, which

again yields to different sized TLS records.

o Different structured documents may lead to a pre-

dictable behavior of the client’s application. For ex-
ample a browser is normally gathers all images of

http://www.openssl.org/~bodo/tls-cbc.txt

a website - causing different requests and different
responses.
o Content on public sites is visible to everyone, an
attacker may link content (e.g., by size) to site content.
Moreover, an attacker could also actively influence the
victim’s behavior and gain information about what she is
doing (without knowledge of the encrypted content) by
providing specially crafted documents with particular and
distinguishable content lengths, structures, URLSs or external
resources. The traffic analysis is not only limited to TLS, but
at least it reveals a weakness that can be exploited.
The author provides some hints on how the surface of
the attack can be limited, but the practicability of the
recommended measures remains questionable.

o URL padding - all URLs are of equal length

o Content padding - all content is of equal size

o Contribution padding - all submitted data is of equal
size

o Structure padding - all sites rely on an equal structure
(e.g., sites with equal number of external resources aso.)

This flaw was also discussed by Wagner and Schneier
in [2], but in a limited manner. Wagner and Schneier credited
Bennet Yee as the first one describing traffic analysis on
SSL. As a countermeasure Wagner and Schneier suggested
support for random length padding not only for block cipher
mode, but for all cipher modes. The use of random length
padding should be mandatory.

The feasibility of Danezis attack was proven by Chen,
Wang, Wang and Zhang in [24] who investigated multiple
real world web applications for these kind of side-channels.

Lesson learned: Clever and creative attackers may
find ways to use every obtainable part of information for
further attacks. More sophisticated attacks are possible
if fields are left unauthenticated. Protocol designers and
developers should be aware of this fact and sparely disclose
any information. This also applies to error messages. If
in doubt only use a single error message for all occurring
errors. One may question herself what the counterpart
could really do if she knows exactly what went wrong (bad
padding, invalid MAC, etc.) If she is a valid user she would
simply try again or give up, independent from a detailed
error message. On the other hand an attacker is grateful for
every peace of information, even a single bit.

8) Practical 1V Chaining vulnerability: Rizzo and
Duong presented in [25] a tool called B.E.A.S.T. that is
able to decrypt HTTPS traffic (e.g., cookies). The au-
thors implemented and extended ideas of Bard [21], [22],
Méller and Dai °. The combination of CBC mode applied
to block ciphers (cf., Figure 7) and predictable IVs (cf.,
Chapter III-AS) enabled guessing of plaintext blocks and
verify the validness. To verify a guess an oracle Ogyess 1S

Shttp://www.weidai.com/ssh2-attack.txt

required returning true in case of a successful guess and
false otherwise, Figure 10 illustrates such an oracle.

true, if guess P* equals the plaintext
false, otherwise

OGuess(P*) = {

Figure 10: Guessing oracle
Rizzo and Duong created such an oracle based on the

precondition that the IVs used by CBC (the last encryption
block of the preceding encryption) are known to the attacker.

To adopt the technique to SSL/TLS and decrypt cipher-
texts byte-wise the authors propose a new kind of attack
named block-wise chosen-boundary attack. It requires that
an attacker is able to move a message before encryption in
its block boundaries. This means an attacker may prepend
a message with arbitrary data in such a way that it is split
into multiple blocks of block-size of the cipher. Based on
this, it is possible to split a message of full block-size into
two blocks: the first one consisting of arbitrary data and the
first byte of the original block, the second block consisting
of the remaining bytes and a single free byte. So prefixing
a message with an attacker defined amount of data shifts
the message (if necessary into a new block). An attacker is
absolutely free to prepend any data of her choice and length.
An example is given in Figure 11.

| Blocksize = 8 |

En| mSy| nPyinRy | mEn| nSy| Sy |20,

BBBBE}EBE s P R E S S O

| Attacker Prefix = 7 |

Figure 11: Example boundary shifting

Full message decryption
To decrypt a full message the attacker adjusts the amount
of random prefix data so that the next unknown byte is
always the last byte in a block. This means in detail that
the message is shifted in such a way, that the scenario
illustrated in Figure 11 applies to the next unknown byte.
The unknown byte becomes the last and only byte of a single
block unknown to the attacker. Finally, this leads to a byte
by byte message decryption.

To apply the previously discussed algorithm Rizzo and
Duong chose HTTPS as SSL/TLS protected application
(protocol). The goal is to decrypt cookies sent by a browser
to a server for authentication. For a successful attack some
preconditions have to be met:

1) An attacker is able to sniff the traffic between victim

and server

2) An attacker can force a victim to perform HTTP(S)

POST requests to the server
3) An attacker can control the document path of the
POST request

http://www.weidai.com/ssh2-attack.txt

4) An attacker forces the victim to visit a website under
control of the attacker to inject exploit code

Due to this massive vulnerability, migration to TLS Version
1.1 has been recommended since by IETF.

Lesson learned: This attack shows that vulnerabilities
considered to be theoretical only can turn in to practice
if skilled attackers put effort in the implementation and
fine-tune the algorithm.

9) Short message collisions and busting the length
hiding feature of SSL/TLS: In [26] Paterson, Ristenpart and
Shrimpton outlined an attack related to the MAC-then-PAD-
then-Encrypt scheme in combination with short messages. In
particular their attack is applicable if all parts of a message
(message, padding, MAC) fit into a single block of the
cipher’s block-size. Under special preconditions the authors
described the creation of multiple ciphertexts leading to the
same plaintext message.

Lesson learned: The surface for this attack is limited,
since the precondition (message, padding and MAC have to
fit into a single block) is quite strong. But it revealed that
in some special cases the preconditions are met.

10) Message distinguishing: Paterson et al. extended
in [26] the attack described in III-A9 enabling an attacker
to distinguish between two messages. The authors sketch
how to distinguish whether the encrypted message contains
YES or NO. The attack is based on clever modification
of the eavesdropped ciphertext so that it either passes the
processing or leads to an error message. Based on the
outcome (error/no error) it is possible to determine which
content was send. The attack works only if the possible
contents are of different, short length. At least, the attack
remains unexploitable due to the fact that it is only possible
for 80 bit truncated MACs. While in versions prior to TLS
1.2 the use of truncated MACs was possible, 1.2 restricts it.
Anyway, truncated MACs are possible in TLS 1.2, too, by
the use of protocol extensions.

Lesson learned: See I1I-A9.

11) Breaking DTLS: In [27] AlFardan and Paterson
applied Vaudenay’s attack (cf., IlI-A2) to DTLS. DTLS
is a slightly different version of regular TLS adjusted to
unreliable transport protocols, such as UDP. There are two
major differences when compared to standard TLS:

1) Complete absence of Alert messages

2) Messages causing protocol errors (bad padding, invalid
MAC, ...) are simply dropped, instead of causing a
connection abort invalidating the session keys

These adjustments are advantageous, as well as disadvan-
tageous at the same time. Vaudenay’s attack may work on
DTLS since bad messages do not cause session invalidation.
But with the lack of error messages the oracles introduced by

Vaudenay can not be used without adjustment. The attacker
gets no feedback whether the modified messages contained
a valid padding or not. The authors adjusted Vaudenay’s
algorithms by using a timing oracle arising from different
processing branches with unequal time consumption.
AlFardan and Paterson covered the OpenSSL and
GnuTLS implementations, both vulnerable to a timing oracle
enhanced version of Vaudenay’s attack. The timing oracle
of OpenSSL arises from a padding dependent MAC check.
In case of correctly padded data the MAC is checked,
where in case of an incorrect padding the verification is
skipped. This behavior leads to a measurable timing dif-
ference allowing drawbacks on the validity of the padding.
GnuTLS in contrast contains a timing side-channel during
the decryption process where sanity checks are performed
prior to decryption.
While the side-channel of OpenSSL is a consequence of
missing countermeasures, even GnuTLS - which implements
all recommended countermeasures - is vulnerable. When
timing differences are too little, reliable timing differences
are gained by sending multiple copies leading to an accu-
mulation of timing differences. According to the authors, it
was necessary for the proof of concept attack to disable the
protocol’s anti-replay option, which is enabled by default.
Lesson learned: The authors recommend to
specification authors that defining standards by only
defining differences to previous standards should be
avoided (DTLS is a sub-specification of TLS).

12) Practical compression based attacks: In Septem-
ber 2012 Juliano Rizzo and Thai Duong presented the
C.R.I.M.E. attack tool. C.R.I.M.E. targets HTTPS and is able
to decrypt traffic, enabling cookie stealing and session take-
over. It exploits a known vulnerability caused by the use of
message compression discovered by Kelsey in 2002 [19].

The attack relies on plaintext size reduction caused by
compression. Given that an attacker is able to obtain the
(real) size of an encrypted, compressed plaintext (without
padding) she might decrypt parts of the ciphertext by observ-
ing the differences in size. An attacker does neither know the
plaintext, nor the compressed plaintext, but is able to observe
the length of the ciphertext. So basically, she prefixes the
secret with guessed subsequences and observes if it leads to
compression (by observing the resulting ciphertext length).
A decreased ciphertext length implies redundancy, so it is
very likely that the guessed, prefixed subsequence caused
redundancy in the plaintext. It can be concluded that with
higher redundancy of input data the better the compression
ratio, resulting in length decreased output. This implies that
a guess, having something in common with the secret, will
have a higher compression rate leading to a shorter output.
When such an output is encountered the attacker knows that
the guess has something in common with the secret.

As preconditions an attacker must be able to sniff the

network and attract a user to visit a website under the
attacker’s control. Further on, both - client and server -
have to use compression enabled SSL/TLS. The website
controlled by the attacker delivers C.R.I.M.E. as JavaScript
to the victim’s browser. Once the script is running an attacker
starts guessing - e.g., the right cookie value - and forcing the
victim to transport the guess concatenated with the desired
cookie as an SSL/TLS message (at least encrypted).

Lesson learned: This attack is just another example for
mainly theoretical attacks that were found to be practical by
skilled attackers.

IV. ATTACKS ON THE PKI

Checking the validity of X.509 certificates is an area full
of problems, which cannot be covered in an overview on
TLS attacks (especially usability aspects). However we want
to point to some specific problems that are technically very
closely related to TLS.

A. Attack discussion

1) Weak cryptographic primitives lead to colliding cer-
tificates: Lenstra, Wang and de Weger described in 2005
how an attacker can create two valid certificates with equal
hash values by computing MD5 collisions [28]. With collid-
ing hash values it is possible to impersonate clients or servers
- attacks of this kind render very hard to detect Mitm attacks
possible.

The practicality of the attack was demonstrated in 2008
by Sotirov et al. ® who were able, through clever interaction
between certificate requests from a legal CA and a massively
parallel search for MDS5 collisions, to create a valid CA
certificate for TLS. With the help of this certificate they
could have issued TLS server certificates for any domain
name, which would have been accepted by any user agent.
(To make sure that their results cannot be misused, they
however chose to create an expired CA certificate.)

Lesson learned: As long as user agents accept MD5
based certificates, the attack surface still exists, even if CAs
stop issuing such certificates. Thus MD5 must be disabled
for certificate checking in all user agents. Moreover, weak
algorithms may lead to complete breach of the security
when targeting the trust anchors.

2) Weaknesses in X.509 certificate constraint checking:
In 2008, US hacker Matthew Rosenfeld, better known as
Moxie Marlinspike, published a vulnerability report [29]
concerning the certificate basic constraint validation of Mi-
crosoft’s Internet Explorer. The Internet Explorer did not
check if certificates were allowed to sign sub-certificates (to
be more technical, if the certificate is in possession of a
CA:TRUE flag). Any valid certificate, signed by a valid CA,
was allowed to issue sub certificates for any domain.

Shttp://www.win.tue.nl/hashclash/rogue-ca/

Normally, issuing subsequent certificates is only valid
if the CA:TRUE flag is present in the own certificate.
Otherwise, certificate inspectors should reject certificates
issued by (intermediate) CAs with insufficient rights.

The tool ss1sniff’ provides a proof of concept imple-
mentation with the attacker acting as Mitm, issuing certifi-
cates for a requested domain on the fly. After a successful
attack the Mitm impersonates the requested server. The basic
functionality of the tool is illustrated in Figure 12.

)
“ Man in the middle

g Client
E—
https://www.example.com

— .
www.example.com
Figure 12: Basic mode of operation of ss1Sniff - Imper-
sonating a server

www.example.com

Lesson learned: The attack relies on a specific
implementation bug and has been fixed. However, certificate
validation is a critical step.

3) Attacks on Certificate Issuer Application Logic: At-
tacks on the PKI by exploiting implementational bugs on CA
side were demonstrated by Moxie Marlinspike in [30], who
was able to trick the CA’s issuance logic by using specially
crafted domain strings. Marlinspike gained valid certificates
for arbitrary domains, issued by trusted CAs. As a prerequi-
site for the attack it is necessary that the issuer only checks if
the requester is the legitimate owner of the TLD. An owner
of a TLD may request for certificates issued for arbitrary
sub-domains (e.g., the owner of example.com may also
request certificates for subdomain.example.com).

Marlinspike makes use of the encoding of X.509 -
ASNI1. ASNI supports multiple String formats, all leading
to slightly different PASCAL String representation conven-
tions. PASCAL represents Strings length-prefixed (a leading
length byte followed by the according number of bytes, each
representing a single character). An example is given in
Figure 13.

| Length | Content |
8 E s P R E s s o

Figure 13: String representation - PASCAL convention

In contrast C Strings are stored in NULL-terminated repre-
sentation. Here, the character bytes are followed by a NULL
byte signalizing the end of the String. This implies that
NULL bytes are prohibited within regular Strings, since they
would lead to premature String termination. This scheme is
illustrated in Figure 14.

http://www.thoughtcrime.org/software/sslsniff/

http://www.win.tue.nl/hashclash/rogue-ca/
http://www.thoughtcrime.org/software/sslsniff/

| Content |Terminator|
E s P R E s s o NULL

Figure 14: String representation - C convention

This knowledge prepares the way for the NULL-Prefix
attack: A sample domain name which could be used
in a Certificate Signing Request (CSR) is the following
www.targetToAttack.com\0.example.com,
assuming that the attacker is the owner of example.com.
The attack works, because the CA logic only checks the
TLD (example.com). The leading NULL-byte (\0) is
valid because of ASNI1’s length-prefixed representation
(where NULL-bytes within the payload String are valid).
When the prepared domain String is presented to common
application logic (mostly written in languages representing
Strings NULL-terminated) the String is prematurely
terminated. As a result only the String afore the NULL byte
(www.targetToAttack.com) is being validated.

A specialization of the attack are wild-card certificates.
The asterisk (*) can be used to create certificates, valid - if
successfully signed by a trusted CA - for any domain (e.g.,
*\0.example.com).

Lesson learned: Certification authorities should be
prepared to deal with different encodings and security
issues related to this.

4) Attacking the PKI: Marlinspike described in [31] an
attack that aims at interfering the infrastructure to revoke
certificates. By the use of the Online Certificate Status
Protocol (OCSP) a client application can check the revo-
cation status of a certificate. OCSP responds to query with
a responseStatus (cf. Figure 15).

OCSPResponse ::= SEQUENCE {
responseStatus

responseBytes (optional)

}
OCSPResponseStatus ::= ENUMERATED {
successful
malformedRequest
internalError
tryLater
sigRequired
unauthorized

}

Figure 15: OCSP Response data type - based on

Source: [32]

The response structure contains a major design flaw:
The responseBytes field is optional, but it is the only
one containing a digital signature. This implies that the
responseStatus field is not protected by a digital signa-
ture. Not all of the OCSPResponseStatus types require
the presence of responseBytes (containing a digital

signature). Especially tryLater does not force signed
responseBytes to be present.

An attacker acting as Mitm could respond to every query
with tryLater. Due to lack for a signature the client has
no chance to detect the spoofed response. Thereby, a victim
is not able to query the revocation status of a certificate.

Lesson learned: 1f real-time checks on a PKI are
required, unsigned responses should lead to a halt in
protocol execution.

5) Congquest of a Certification Authority: At 15 March

2011 the Comodo CA Ltd. 8 Certification Authority (CA)
was successfully compromised [33]. An attacker used a
reseller account to issue 9 certificates for popular domains.
Except rumors, the purpose of the attack remains unclear.
Soon after attack discovery the concerned certificates have
been revoked. Due to previously discussed weaknesses af-
fecting the revocation infrastructure (cf. IV-A4) it could be
possible that these certificates remain valid to parties with
out-of-date or missing certificate revocation lists.
It is crucial to note that the attacker did not compromise Co-
modo’s infrastructure directly (key material and servers were
not compromised at any time). Moreover, valid credentials
of a reseller were used to sign CSRs.

Lesson learned: Certification authorities have to
protect their critical infrastructure with strong security
mechanisms. Certificate issuing should not rely on weak
authentication mechanisms like username/password only.

6) Conquest of another Certification Authority: Soon
after the attack on Comodo, a Dutch Certification Au-
thority - DigiNotar - was completely compromised by an
attacker [34]. In contrast to the Comodo impact, the attacker
was able to gain control over the DigiNotar infrastructure.
The attack discovery was eased by Google’s Chrome web
browser who complained about mismatching certificates for
Google-owned domains. The browser stores hard coded
copies of the genuine certificates for Google and thus was
able to detect bogus certificates.

Lesson learned: Beside the lesson learned from IV-AS,
it can be seen that non-cryptographic security mechanisms
like malware and intrusion detection must be present in CA
systems.

7) Attacks on non-browser based certificate valida-
tion: At CCS 2012, Georgiev et al. [35] uncovered that
widespread, common used libraries for SSL/TLS suffer
from vulnerable certificate validation implementations. The
authors revealed weaknesses in the source code of OpenSSL,
GnuTLS, JSSE, ApacheHttpClient, Weberknecht, cURL,
PHP, Python and applications build upon or with these
products. The authors examined the root causes for the

8http://www.comodo.com

http://www.comodo.com

bugs and were able to exploit most of the vulnerabilities.
As major causes for these problems bad and misleading
API specifications, lacking interest for security concerns
(even by banking applications!) and the absence of essential
validation routines were identified. Especially OpenSSL and
GnuTLS provide confusing APIs, leaving important tasks
influencing security to the API consumer. Even worse, the
API of cURL was attested to be “almost perversely bad”.
Especially, the following security tasks and robustness of
the libraries’ code responsible for these tasks are considered:

« Certificate chaining and verification

o Host name verification

« Certificate revocation checks

e X.509 Extension handling and processing

Exploiting these vulnerabilities may lead to successful Mitm
and impersonation attacks.

Lesson learned: The study of Georgiev et al. gives
an example on the importance of clean, simple and well
documented APIs.

V. VARIOUS ATTACKS

This section deals with various attacks not suitable for
any of the previous attack sections.

A. Attack discussion

1) Random number prediction: In January 1996, Gold-
berg and Wagner published an article [36] on the quality of
random numbers used for SSL connections by the Netscape
Browser. The authors gained access to the application’s
Source Code by decompiling it and identified striking weak-
nesses in the algorithm responsible for random number
generation. The entropy of the algorithm relied completely
on few, predictable values:

o Current time
o Current process id
o Process id of the parent process

Moreover, the authors showed that due to export limitations
the entropy of key material is extremely limited - enabling
brute force attacks.

Lesson learned: The problem of weak random number
generators is not a specific problem of SSL or TLS but
reminds that a good (pseudo) random number generator
(PRNG) is crucial for cryptographic purposes (cf. V-A2).

2) Weakened security through bad random numbers:
In 2008 Luciano Bello [37] observed during code review
that the PRNG of Debian-specific OpenSSL was predictable
starting from version 0.9.8c-1, Sep 17 2006 until 0.9.8c-4,
May 13 2008, due to an implementation bug. A Debian-
specific patch removed two very important lines in the

libssl source code responsible for providing adequate
entropy’ (cf. Figure 16).

MD_Update(&m, buf , j);
[.. 1]
MD_Update(&m, buf,j); /* purify complains x*/

Figure 16: Lines commented out leading to a serious bug -
Source: Debian optimized OpenSSL Source Code

This allowed a brute force attack, since the key space was
significantly limited without these code lines.

Lesson learned: Developers should comment
security critical parts of source code, explain exactly
the code’s intention and highlight the consequences
when altered (e.g., in Java developers could decide to
introduce a Java Doc keyword SECURITY that marks
security related comments or additionally introduce a
@Security (critical=true) annotation). Beyond
this, test cases targeting the critical code lines and returning
errors if removed or altered should be provided.

3) Denial of Service enabled by Exceptions: In [38]
Zhao et al. provided an attack on the TLS handshake which
leads to an immediate connection shutdown and can thus
be used for a Denial of Service (DoS) attack. The authors
exploited two previously discussed weaknesses to mount
successful attacks.

o The first attack targets the Alert protocol of TLS
and makes use of the fact that, due to yet missing
completed cryptographic primitives negotiation during
the handshake phase, all Alert messages remain
strictly unauthenticated and thus spoof-able. This en-
ables an obvious, but effective attack: Spoofing Fatal
Alert messages which cause immediate connection
shutdowns

o The second attack simply confuses a communication
partner by sending either misleading or replayed mes-
sages or responding with wrong messages according to
the expected handshake flow.

Lesson learned: Even obvious and self-evident
weaknesses (such as DoS vulnerabilities) have to be
discussed and focus of research.

4) Renegotiation flaw: Ray and Dispensa discovered
in [39] a serious flaw induced by the renegotiation feature
of TLS. The flaw enables an attacker to inject data into a
running connection without destroying the session. A server
would accept the data, believing its origin is the client. This
could lead to abuse of established sessions - e.g., an attacker

9http://anonscm.debian.org/viewvc/pkg-openssl/openssl/trunk/rand/md_
rand.c?p2=%2Fopenssl%2Ftrunk%2Frand%2Fmd_rand.c&pl=openssl%
2Ftrunk%2Frand%2Fmd_rand.c&r1=141&r2=140&view=diff&pathrev=
141

 http://anonscm.debian.org/viewvc/pkg-openssl/openssl/trunk/rand/md_rand.c?p2=%2 Fopenssl%2Ftrunk%2Frand%2Fmd_rand.c&p1=openssl%2Ftrunk%2Frand%2Fmd_rand.c& r1=141&r2=140&view=diff&pathrev=141
 http://anonscm.debian.org/viewvc/pkg-openssl/openssl/trunk/rand/md_rand.c?p2=%2 Fopenssl%2Ftrunk%2Frand%2Fmd_rand.c&p1=openssl%2Ftrunk%2Frand%2Fmd_rand.c& r1=141&r2=140&view=diff&pathrev=141
 http://anonscm.debian.org/viewvc/pkg-openssl/openssl/trunk/rand/md_rand.c?p2=%2 Fopenssl%2Ftrunk%2Frand%2Fmd_rand.c&p1=openssl%2Ftrunk%2Frand%2Fmd_rand.c& r1=141&r2=140&view=diff&pathrev=141
 http://anonscm.debian.org/viewvc/pkg-openssl/openssl/trunk/rand/md_rand.c?p2=%2 Fopenssl%2Ftrunk%2Frand%2Fmd_rand.c&p1=openssl%2Ftrunk%2Frand%2Fmd_rand.c& r1=141&r2=140&view=diff&pathrev=141

could impersonate a legitimate victim currently logged in to
a web application.

A& Man in the middie
CTisHandshakesr)<
TLS Session #1 established | <

S Client

Start TLS #2 end own request

B
(CRLF missing or unfinished POST)|
GET /sendTo.php?addr=MitM_Ave.
HTTP/1.1

X-Ignore-This:
---- ICRLF missing! ---

Trigger renegotiation i

#2_ | Pipe TLS Handshake #2 «>
into TLS Session #1

Encrypted

(_complete TLS

Send own request
(CRLF missing or unfinished POST)

GET /sendTo.php?addr=Client_Str.
HTTP/1.1

Cookie: clientCookie

Request at server side

GET /sendTo.php?addr=MitM_Ave.
HTTP/1.1

X-lgnore-This: GET /sendTo.php?
addr=Client_Str. HTTP/1.1

Cookie: clientsAuthCookie:

Figure 17: Example scenario for the renegotiation attack -
based on Source: [39]

Figure 17 shows how an attacker acting as Mitm may
abuse the renegotiation feature to inject arbitrary data into
a TLS connection. In the example scenario an attacker
concatenates 2 GET requests to send a gift to MitM Ave.
instead of Client Str.. This requires an authentication
based on cookies. The client attaches its authentication
cookie to the own request, but the attacker previously left
its own request unfinished by omitting a final CRLF and
adding a non-existent header field without value. At server
side the following happens: since the last request is not
finished yet, the following data (the original client request)
is concatenated with the pending data. The GET request of
the client becomes the value of the non-existent header field
and is therefor ignored by the server. The authentication
cookie in the next line remains valid (due to the \n after
the GET line). The result is a valid request with a valid
cookie. It is important to note, that the attacker does not
get the authentication cookie in plaintext, but her request is
constructed to be concatenated on server side in a way that
the first line of the client’s request gets dropped (by using
the header trick) - the attacker is at no time able to decrypt
traffic.

Anil Kurmus proved the flaw to be practical by stealing
confidential data through a slightly different attack on Twit-
ter'® (he used an unfinished POST request) enabled by the
renegotiation flaw!!.

There are multiple ways to fix the problem. E.g., Eric
Rescorla proposed a special TLS extension [40] that fixes
this flaw.

Lesson learned: When switching security contexts it
needs to be guaranteed that there is no pending data left.

1Ohttp://www.twitter.com

Uhttp://www.securegoose.org/2009/11/tls-renegotiation- vulnerability-cve.

html

5) Disabling SSL/TLS at a higher layer: In February
2009, Moxie Marlinspike released the sslstrip'? tool
which disables SSL/TLS at a higher layer. As a precondition
it is necessary for an attacker to act as Mitm. To disable
the security layer the tool sends HTTP 301 - perma-
nent redirection responses and replaces any occurrence of
https:// with http://. This causes the client to move
to the redirected page and communicate unencrypted and
unauthenticated (when the stripping succeeds and the client
does not notice that she is being fooled). Finally, the attacker
opens a fresh session to the (requested) server and passes-
through or alters any client and server data. The attack sketch
is outlined in Figure 18.

)

S Client AL Man in the middie

GET / HTTP/1.1 — —
Host: www.example.com

HTTP/1.1 301 MOVED PERMANENTLY|
Location: http://www.example.org

GET / HTTP/1.1 - —
Host: www.example.org

- -

i Server

HTTP/1.1 301 MOVED PERMANENTLY|
Location: https://www.example.org

-« -

HTTP/1.1 200 OK
... Payload ...

unsecure secure

channel channel
—_—

Figure 18: Example scenario for a SSL stripping attack

Lesson learned: Usability is the keyword here: In
principle, a user should be able to detect the redirection
to http:// if it is properly visualized, e.g. by using red
colored address bars for all non-SSL/TLS connections.

6) Computational Denial of Service: In 2011, the Ger-
man Hacker Group The Hackers Choice released a tool
called THC-SST.-DoS!3, which creates huge load on servers
by overwhelming the target with SSL/TLS handshake re-
quests. Boosting system load is done by establishing new
connections or using renegotiation. Assuming that the ma-
jority of computation during a handshake is done by the
server the attack creates more system load on the server than
on the own device - leading to a DoS. The server is forced
to continuously recompute random numbers and keys.

Lesson learned: In DoS attacks, cryptography is part
of the problem, not a solution.

VI. CONCLUSION

When summarizing the attacks and lessons learned some
guidelines for protocol designers and implementors emerge.

Since theoretical only weaknesses turned out to be adopt-
able in practice every outlined weakness should be taken
seriously. Unexploitability may not last forever.

From a developer’s point of view reliable cryptographic
primitives (e.g., good and strong random numbers) and side-
channel hardened algorithms turned out to be of importance.

2http://www.thoughtcrime.org/software/sslstrip/
Bhttp://www.thc.org/thc-ssl-dos/

http://www.twitter.com
 http://www.securegoose.org/2009/11/tls-renegotiation-vulnerability-cve.html
 http://www.securegoose.org/2009/11/tls-renegotiation-vulnerability-cve.html
http://www.thoughtcrime.org/software/sslstrip/
http://www.thc.org/thc-ssl-dos/

Side-channel resistance evolved to a general, since side-
channels of any kind (information leaks, timing differences,
etc.) appear at different layers in different situations. More-
over, verbosity (e.g., error messages), normally a honorable
intention, provides attackers valuable information on internal
states and processing. Thus, as little information as possible
should be provided. Another critical aspect in matters of
honorable intersessions are own improvements on specifica-
tions for additional value (e.g., performance gains), because
they may lead to unintended vulnerabilities. Therefore, a
specification should be implemented exactly as is, without
modifications and tweaks. Marking critical parts of source
code with precise and clear comments highlighting poten-
tial risks could prevent disadvantageous modifications. This
should especially be best-practice when fixing vulnerabilities
to prevent bug reintroduction. Fixing software can be an
error prone task, since fixes have to patch not only the
current vulnerability occurrence, but all parts of the code that
may suffer from the same weakness. This often requires to
think about the interplay of different layers and applications.
As a final remark for developers, it can be concluded that
one should always be alarmed when working on security
critical components. Security is a necessity, not a necessary
evil.

Protocol designers, in turn, should be as precise as
possible when defining a specification. Specifications with
room for interpretation and implementational freedom can
lead to misunderstanding or unawareness of security related
concerns. Especially where processing order makes a huge
difference highlighting the risks of process reordering is
crucial. Risks related to divergence on the specification
need to be clarified and highlighted. Thus, the specification
of minimum requirements and mandatory preconditions is
required. This implies strong and context-free message struc-
tures with little to no room for misinterpretation. Sensitive
fields have to be authenticated and, if necessary, confidential
fields should be encrypted. The communication parties need
to authenticate what was sent and received at any time,
to obviate deliberate or non deliberate modifications dur-
ing transport. Finally, adhere that flexibility mostly means
complexity which should be avoided.

DoS attacks remain a future problem that has to be focus
of research and discussion. New directions and means to
lower the surface emerged to be of increased relevance.

VII. ACKNOWLEDGMENTS

This work was partially funded by the Sec? project of
the German Federal Ministry of Education and Research
(BMBF, FKZ: 01BY1030).

REFERENCES

[1] E. Rescorla, SSL and TLS: Designing and Building Secure
Systems. Addison-Wesley, 2001.

[2] D. Wagner and B. Schneier, “Analysis of the SSL 3.0 proto-
col,” The Second USENIX Workshop on Electronic Commerce
Proceedings, pp. 29-40, 1996.

[3] M. Bellare and P. Rogaway, “Entity authentication and key
distribution,” 1994, pp. 232-249.

[4] T. Dierks and C. Allen, “The TLS Protocol Version 1.0,”
RFC 2246 (Proposed Standard), Internet Engineering Task
Force, Jan. 1999. [Online]. Available: http://www.ietf.org/rfc/
rfc2246.txt

[5] D. Bleichenbacher, “Chosen ciphertext attacks against pro-
tocols based on the RSA encryption standard PKCS #1,” in
Advances in Cryptology — CRYPTO 98, ser. Lecture Notes
in Computer Science, H. Krawczyk, Ed. Springer Berlin /
Heidelberg, 1998, vol. 1462, pp. 1-12.

[6] G. Davida, “Chosen Signature Cryptanalysis of the RSA
(MIT)Public Key Cryptosystem,” Tech. Rep., 1982.

[7] D. Brumley and D. Boneh, “Remote timing attacks are
practical,” in Proceedings of the 12th conference on USENIX
Security Symposium - Volume 12, ser. SSYM’03. Berkeley,
CA, USA: USENIX Association, Jun. 2003, pp. 1-1.

[8] P. C. Kocher, “Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems,” in Proceedings
of the 16th Annual International Cryptology Conference on
Advances in Cryptology, ser. CRYPTO ’96. London, UK,
UK: Springer-Verlag, Aug. 1996, pp. 104-113.

[9] O. Aciicmez, W. Schindler, and C. Koc, “Improving Brumley
and Boneh timing attack on unprotected SSL implemen-
tations,” in Proceedings of the 12th ACM conference on
Computer and communications security. ACM, Nov. 2005,
pp. 139-146.

[10] V. Klima, O. Pokorny, and T. Rosa, “Attacking RSA-Based
Sessions in SSL/TLS,” in Cryptographic Hardware and Em-
bedded Systems - CHES 2003, ser. Lecture Notes in Computer
Science, C. Walter, C. Koc, and C. Paar, Eds. Springer Berlin
/ Heidelberg, Sep. 2003, vol. 2779, pp. 426-440.

[11] B. Brumley and N. Tuveri, “Remote Timing Attacks Are
Still Practical,” in Computer Security - ESORICS 2011, ser.
Lecture Notes in Computer Science, V. Atluri and C. Diaz,
Eds. Springer Berlin / Heidelberg, Sep. 2011, vol. 6879, pp.
355-371.

[12] P. L. Montgomery, “Speeding the Pollard and elliptic curve
methods of factorization,” MC, no. 48, 1987.

[13] J. Lépez and R. Dahab, “Fast Multiplication on Elliptic
Curves Over GF(2m) without precomputation,” in Crypto-
graphic Hardware and Embedded Systems, ser. Lecture Notes
in Computer Science, C. Koc and C. Paar, Eds. Springer
Berlin / Heidelberg, 1999, vol. 1717, pp. 724-724.

[14] N. A. Howgrave-Graham and N. P. Smart, “Lattice Attacks
on Digital Signature Schemes,” Designs, Codes and Cryptog-
raphy, vol. 23, pp. 283-290, 2001.

http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc2246.txt

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

[27]

R. Bardou, R. Focardi, Y. Kawamoto, L. Simionato,
G. Steel, and J.-K. Tsay, “Efficient Padding Oracle
Attacks on Cryptographic Hardware,” INRIA, Rapport
de recherche RR-7944, Apr. 2012. [Online]. Available:
http://hal.inria.fr/hal-00691958

N. Mavrogiannopoulos, F. Vercauteren, V. Velichkov, and
B. Preneel, “A Cross-Protocol Attack on the TLS Protocol,”
in Proceedings of the 2012 ACM conference on Computer and
communications security, ser. CCS ’12. ACM, Oct. 2012,
pp. 62-72.

S. Vaudenay, “Security Flaws Induced by CBC Padding —
Applications to SSL, IPSEC, WTLS...” in Advances in Cryp-
tology — EUROCRYPT 2002, ser. Lecture Notes in Computer
Science, L. Knudsen, Ed. Springer Berlin / Heidelberg, Apr.
2002, vol. 2332, pp. 534-545.

D. A. McGrew and J. Viega, “The Galois/counter mode of
operation (GCM),” 2005.

J. Kelsey, “Compression and information leakage of plain-
text,” in Fast Software Encryption, 9th International Work-
shop, FSE 2002, Leuven, Belgium, February 4-6, 2002, Re-
vised Papers, ser. Lecture Notes in Computer Science, vol.
2365. Springer, Nov. 2002, pp. 263-276.

B. Canvel, A. Hiltgen, S. Vaudenay, and M. Vuagnoux, “Pass-
word Interception in a SSL/TLS Channel,” in Advances in
Cryptology - CRYPTO 2003, ser. Lecture Notes in Computer
Science, D. Boneh, Ed. Springer Berlin / Heidelberg, Aug.
2003, vol. 2729, pp. 583-599.

G. V. Bard, “The vulnerability of ssl to chosen plaintext
attack.” JACR Cryptology ePrint Archive, vol. 2004, p. 111,
May 2004.

, “A Challenging But Feasible Blockwise-Adaptive
Chosen-Plaintext Attack on SSL,” in SECRYPT 2006, Pro-
ceedings of the International Conference on Security and
Cryptography. INSTICC Press, Aug. 2006, pp. 7-10.

G. Danezis, “Traffic Analysis of the HTTP Protocol over
TLS,” unpublished manuscript.

S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-Channel
Leaks in Web Applications: A Reality Today, a Challenge
Tomorrow,” in Proceedings of the 2010 IEEE Symposium on
Security and Privacy, ser. SP *10. IEEE Computer Society,
May 2010, pp. 191-206.

J. Rizzo and T. Duong, “Here Come The XOR Ninjas,” May
2011.

K. G. Paterson, T. Ristenpart, and T. Shrimpton, “Tag size
does matter: attacks and proofs for the TLS record proto-
col,” in Proceedings of the 17th international conference on
The Theory and Application of Cryptology and Information
Security, ser. ASIACRYPT’11. Berlin, Heidelberg: Springer-
Verlag, Dec. 2011, pp. 372-389.

N. AlFardan and K. Paterson, “Plaintext-Recovery Attacks
Against Datagram TLS,” in Network and Distributed System
Security Symposium (NDSS 2012), Feb. 2012.

(28]

[29]

[30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

[40]

A. Lenstra, X. Wang, and B. de Weger, “Colliding X.509
Certificates,” Cryptology ePrint Archive, Report 2005/067,
Mar. 2005.

M. Rosenfeld, “Internet Explorer SSL Vulnerability,”
May 2008. [Online]. Available: http://www.thoughtcrime.
org/ie-ssl-chain.txt

——, “Null Prefix Attacks Against SSL/TLS Certificates,”
Feb. 2009. [Online]. Available: http://www.thoughtcrime.org/
papers/null-prefix-attacks.pdf

, “Defeating OCSP With The Character ’3’,” Jul.
2009. [Online]. Available: http://www.thoughtcrime.org/
papers/ocsp-attack.pdf

M. Myers, R. Ankney, A. Malpani, S. Galperin, and
C. Adams, “X.509 Internet Public Key Infrastructure Online
Certificate Status Protocol - OCSP,” RFC 2560 (Proposed
Standard), Internet Engineering Task Force, Jun. 1999.
[Online]. Available: http://www.ietf.org/rfc/rfc2560.txt

Comodo CA Ltd., “Comodo Report of Incident - Comodo
detected and thwarted an intrusion on 26-MAR-2011,” Tech.
Rep., Mar. 2011.

Fox-IT, “Black Tulip - Report of the investigation into the
DigiNotar Certificate Authority breach,” Tech. Rep., Aug.
2012.

M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh,
and V. Shmatikov, “The Most Dangerous Code in the World:
Validating SSL Certificates in Non-Browser Software,” in
ACM Conference on Computer and Communications Security,
2012.

Goldberg and Wagner, “Randomness and the Netscape
browser,” Dr. Dobb’s Journal, Jan. 1996.

F. Weimer, “DSA-1571-1 openssl - predictable
random number generator,” Network Working Group,
May 2008. [Online]. Available: http://lists.debian.org/
debian-security-announce/2008/msg00152.html

Y. Zhao, S. Vemuri, J. Chen, Y. Chen, H. Zhou, and Z. Fu,
“Exception triggered DoS attacks on wireless networks,” in
Proceedings of the 2009 IEEE/IFIP International Conference
on Dependable Systems and Networks, DSN 2009, Jun. 2009,
pp. 13-22.

M. Ray and S. Dispensa, “Renegotiating TLS,” PhoneFactor,
Inc., Tech. Rep., Nov. 2009.

E. Rescorla, M. Ray, S. Dispensa, and N. Oskov,
“Transport Layer Security (TLS) Renegotiation Indication
Extension,” RFC 2246 (Proposed Standard), Network
Working Group, Nov. 2009. [Online]. Available: http:
/Itools.ietf.org/id/draft-rescorla-tls-renegotiation-01.txt

http://hal.inria.fr/hal-00691958
http://www.thoughtcrime.org/ie-ssl-chain.txt
http://www.thoughtcrime.org/ie-ssl-chain.txt
http://www.thoughtcrime.org/papers/null-prefix-attacks.pdf
http://www.thoughtcrime.org/papers/null-prefix-attacks.pdf
http://www.thoughtcrime.org/papers/ocsp-attack.pdf
http://www.thoughtcrime.org/papers/ocsp-attack.pdf
http://www.ietf.org/rfc/rfc2560.txt
http://lists.debian.org/debian-security-announce/2008/msg00152.html
http://lists.debian.org/debian-security-announce/2008/msg00152.html
http://tools.ietf.org/id/draft-rescorla-tls-renegotiation-01.txt
http://tools.ietf.org/id/draft-rescorla-tls-renegotiation-01.txt

	Introduction
	Attacks on the Handshake Protocol
	Cipher suite rollback
	ChangeCipherSpec message drop
	Key exchange algorithm confusion
	Version rollback
	Bleichenbacher Attack on PKCS#1
	The rise of timing based attacks
	Improvements on Bleichenbacher's attack
	ECC based timing attacks
	Even more improvements on Bleichenbacher's attack
	ECC-based key exchange algorithm confusion attack

	Attacks on the Record and Application Data Protocols
	Attack discussion
	MAC does not cover padding length
	Weaknesses through CBC usage
	Information leakage by the use of compression
	Intercepting SSL/TLS protected traffic
	Chosen-Plain-text Attacks on SSL
	Chosen-Plain-text Attacks on SSL reloaded
	Traffic analysis of TLS
	Practical IV Chaining vulnerability
	Short message collisions and busting the length hiding feature of SSL/TLS
	Message distinguishing
	Breaking DTLS
	Practical compression based attacks

	Attacks on the PKI
	Attack discussion
	Weak cryptographic primitives lead to colliding certificates
	Weaknesses in X.509 certificate constraint checking
	Attacks on Certificate Issuer Application Logic
	Attacking the PKI
	Conquest of a Certification Authority
	Conquest of another Certification Authority
	Attacks on non-browser based certificate validation

	Various Attacks
	Attack discussion
	Random number prediction
	Weakened security through bad random numbers
	Denial of Service enabled by Exceptions
	Renegotiation flaw
	Disabling SSL/TLS at a higher layer
	Computational Denial of Service

	Conclusion
	Acknowledgments
	References

