

Dedication

I would like to dedicate this project to the National Security Agency. For better or worse, good or evil,

what follows would not have been created without you. Because sometimes upholding constitutional

ideas just isn’t enough; sometimes you have to uphold the actual Constitution. May god bless these

United States of America. May she once again become the land of the free and home of the brave.

Ladar Levison

2

Please Note
This is a preliminary draft. We anticipate updated revision(s) will be published later this year. To find

the latest version of this document, provide feedback, or contribute to the development effort,

please use the links below.

Dive https://darkmail.info/spec

Discuss https://darkmail.info/forums

Develop https://darkmail.info/code

 3

CONTENTS

Dedication ... 1

Contents .. 3

Figures .. 10

Overview ... 11

Part 1: Abstract ... 13

Part 2: Terminology ... 14

Keywords ... 14

Actors ... 14

Account Modes ... 15

Signets ... 15

Terms ... 16

Part 3: System Architecture .. 20

Introduction ... 20

Design Goals .. 21

Operational Directives ... 22

Functional Components ... 23

Transport .. 23

Message Object .. 24

Classic Email Agents ... 25

Privacy Processing Agents .. 25

Organization Privacy Agent .. 25

User Privacy Agent ... 26

Signet Retrieval Services ... 26

Part 4: Management Record ... 28

Introduction ... 28

4

Location ... 28

Text Records ... 29

Security .. 29

Expiration ... 30

Fields .. 30

Definitions.. 31

Descriptions ... 31

Examples .. 36

Part 5: Signet Data Format .. 38

Introduction ... 38

Groupings... 38

Classes.. 38

Types .. 38

Modifiers .. 39

Categories .. 39

Field Identifiers ... 39

Ranges ... 40

Reserved .. 40

Ordering ... 40

Binary Layouts .. 41

Signet Header .. 41

Field Types ... 42

Cryptography .. 43

Signing Keys .. 43

Encryption Keys .. 43

Signatures .. 44

 5

Splitting .. 44

Fingerprints ... 45

Cryptographic Signets .. 46

Organizational Signets ... 46

User Signets... 48

Full Signets .. 51

Common Fields ... 52

Distinct Organizational Fields .. 56

Distinct User Fields ... 60

Special Fields ... 62

Signature Field .. 63

Identifiable Signets ... 64

Derivative Formats ... 65

Signet Signing Requests .. 65

Organizational Private Keys .. 65

User Private Keys ... 65

Encrypted Private Keys .. 65

Usage ... 65

Rotation ... 65

Revocation ... 65

Validation ... 65

Encoding .. 66

Binary ... 66

JavaScript Object Notation ... 66

Privacy Enhanced Message... 66

Part 6: Message Data Format (D/MIME) ... 68

6

Introduction ... 68

Historical Context ... 68

Leakage.. 69

Algorithms ... 69

Required Baseline ... 70

Alternate Baselines .. 70

Types .. 70

Messages ... 71

Data Format ... 73

Message Header ... 73

Chunks .. 73

Specialized Payloads .. 74

Encrypted Payloads .. 74

Signature Payloads ... 77

Keyslots ... 77

Chunks .. 77

Envelope .. 78

Metadata ... 79

Display .. 79

Attachments .. 79

Signatures .. 79

Endianness ... 80

Transfer Encoding ... 80

Part 7: Dark Mail Transfer Protocol (DMTP) ... 82

Introduction ... 82

Protocol Model .. 82

 7

Historical Context ... 83

Line Based Protocol .. 84

Commands and Replies ... 85

Mail Transactions .. 87

Objects ... 87

Delivery .. 87

Caching ... 87

Connections ... 87

Certificates ... 89

Single Protocol Mode ... 90

Dual Protocol Hosts .. 90

Timeouts .. 91

Termination ... 93

Global Commands ... 94

HELO ... 94

EHLO ... 94

MODE .. 95

RSET .. 95

NOOP .. 96

HELP .. 96

QUIT .. 97

Message Transfer Commands .. 97

MAIL ... 97

RCPT ... 99

DATA ... 100

Signet Transfer Commands ... 102

8

SGNT ... 102

HIST ... 104

VRFY ... 105

Response Codes.. 106

Protocol Extensions .. 107

SIZE ... 107

BINARY ... 107

UNICODE ... 107

PIPELINING ... 107

SURROGATE ... 107

Part 8: Dark Mail Access Protocol (DMAP) ... 108

Part 9: Global Ledger ... 109

Part 10: Dark Mail Alliance .. 110

Part 11: Threats .. 111

Threats ... 111

Venues ... 111

Vectors ... 114

Mitigation Strategies .. 116

Message Protection ... 116

Account Modes ... 117

Attack Vector Mitigation ... 118

Network Packet Capture ... 118

Forward Secrecy ... 118

Signet and Key Management ... 119

Basic Management and Operation ... 119

Part 12: Attacks and Mitigations .. 124

 9

Part 13: Known Vulnerabilities ... 125

Part 14: Credits ... 126

Author .. 126

Ladar Levison .. 126

Contributors ... 126

Dave Crocker ... 126

Unnamed Contributors ... 126

Attribution ... 127

Part 15: References ... 128

Appendix A: Data Type Identifiers ... 131

Appendix B: Common Encodings.. 132

Base64url Encoding .. 132

Notes on implementing base64url encoding without padding ... 132

Multiprecision Integers .. 133

Radix-64 Conversions .. 134

Encoding Binary in Radix-64 ... 135

Decoding Radix-64 ... 136

EdDSA Point Format ... 136

Test vectors ... 136

Sample key .. 136

Signature Encoding ... 137

Appendix C: What Needs Doing ... 138

10

F IGURES

Figure 1 – Traditional Email Handling Architecture .. 20

Figure 2 - Proposed Email Handling Architecture .. 21

Figure 3 - DIME Functional Component .. 23

Figure 4 - DIME Transport ... 24

Figure 5 - DIME Message Object .. 24

Figure 6 - Signet Lookup Services .. 26

Figure 7 - Policy Dispositions .. 35

Figure 8 – Signet Groupings .. 39

Figure 9 - Message Structure ... 72

Figure 10 – Author Spoofing ... 112

Figure 11 – Service Provider Spoofing... 112

Figure 12 – Message Content Disclosure .. 113

Figure 13 – Metadata Disclosure .. 114

Figure 14 – Basic Message Protection ... 117

 11

OVERVIEW

This document is divided into sections that will introduce the reader to the Dark Internet Mail Environment (DIME)

terminology, architecture, security, data formats, and protocol specifications.

PART 1: ABSTRACT

The Abstract serves as a short introduction to this document.

PART 2: TERMINOLOGY

The Terminology section defines all DIME-specific terminology as well as other industry standard terms, acronyms and

key words used throughout this document.

PART 3: SYSTEM ARCHITECTURE

The System Architecture section introduces DIME, discusses the design goals, and then provides an illustrated guide to

the functional components of a complete DIME-enabled mail handling environment.

PART 4: MANAGEMENT RECORD

The Management Record section describes the DNS record used to enable DIME support, advertise policies and provide a

cryptographic trust anchor for an organizational domain name.

PART 5: SIGNET DATA FORMAT

The Signet Data Format section describes the data format for user and organizational signets.

PART 6: MESSAGE DATA FORMAT

The Message Data Format section describes the format used to encrypt messages and protect the data they carry.

PART 7: DARK MAIL TRANSFER PROTOCOL (DMTP)

The DMTP section details the unauthenticated protocol specification for message transfers and signet lookups. It provides

connection standards, command syntax, and certificate requirements.

PART 8: DARK MAIL ACCESS PROTOCOL (DMAP)

The DMAP section details the authenticated access protocol specification used within the DIME ecosystem.

PART 9: GLOBAL LEDGER

The Global Ledger section details the implementation and use of a distributed immutable reflective ledger for signets.

12

PART 10: DARK MAIL ALLIANCE

The Dark Mail Alliance section details the creation of the Dark Mail Alliance (DMA) and describes its function and

oversight responsibilities, including the processes used to manage DIME infrastructure projects.

PART 11: THREATS

The Threats section details the threats to the privacy functions of DIME and provides a discussion of security

considerations not covered elsewhere.

PART 12: ATTACKS AND MITIGATION

The Attacks and Mitigation section details attack scenarios, and provides strategies DIME actors can employ to mitigate

specific vectors.

PART 13: KNOWN VULNERABILITIES

The Known Vulnerabilities section will detail any known vulnerabilities as they are discovered.

PART 14: CREDITS

The Credits section provides attributions to the people that helped immensely with this document.

PART 15: REFERENCES

The References section provides a detailed bibliography for the references used throughout this document.

 13

PART 1: ABSTRACT

This document provides the reader with an overview of the Dark Internet Mail Environment (DIME) along with detailed

specifications for the data formats and protocols needed for a successful implementation. As revealed in the Overview,

these chapters cover the following: Terminology, System Architecture, the Management Record, the Signet Data Format,

the Message Data Format, the Dark Mail Transfer Protocol, the Dark Mail Access Protocol, the Global Ledger, the Dark

Mail Alliance, a discussion of Threats, Attacks, and Mitigations incorporated into the system design plus a disclosure of

any Known Vulnerabilities.

DIME strives to create a secure communications platform for asynchronous messaging across the Internet. The key

design element which differentiates DIME from traditional Internet electronic mail (email) is the use of end-to-end

encryption. The incorporation of encryption directly into the protocols ensures the secure and reliable delivery of email,

while providing for message confidentiality, tamper protection, and a dramatic reduction in the leakage of metadata to

processing agents encountered along the delivery path. To the extent possible, we have made DIME resistant to

manipulation, but a secure system is only as strong as its weakest link. The goal with DIME has been, wherever possible,

to make the security of the system depend on the complexity of a user’s password, and the strength of their endpoint’s

defenses.

This document should serve as an implementation and deployment guide. Our goal is to collect and present, in a singular

place, all of the current DIME specifications, standards and best practices. The intended audience is system builders

(software developers, integrators), system operators, security researchers and protocol designers. However, this

document should provide anyone who reads it with a understanding of the details necessary to design, implement and

deploy a secure system that conforms to DIME’s strict user-centric requirements for privacy protection.

14

PART 2: TERMINOLOGY

A number of other terms are used throughout this document which have been taken from related specifications or

developed out of colloquial usage. We have attempted to collect the terms with special or unusual means throughout this

document and provide definitions for them here.

KEYWORDS

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”,

“MAY”, “OPTIONAL”, “EXPERIMENTAL” and “ASSIGNED” are used throughout this document and are to be interpreted

using the definitions provided below. [KEYWORD]

Keywords Definition
MUST This word, or the terms "REQUIRED” or "SHALL", assert that the definition is an absolute

requirement of the specification.
MUST NOT This phrase, or the phrase "SHALL NOT", asserts that the definition is an absolute

prohibition of the specification.
SHOULD This word, or the term "RECOMMENDED", asserts that there may exist valid reasons in

particular circumstances to ignore a particular item, but the full implications must be
understood and carefully weighed before choosing a different course.

SHOULD NOT This phrase, or the phrase "NOT RECOMMENDED", asserts that there may exist valid
reasons in particular circumstances when the particular behavior is acceptable or even
useful, but the full implications should be understood and the case carefully weighed
before implementing any behavior described with this label.

MAY This word, or the term "OPTIONAL", asserts that an item is truly optional. One vendor
may choose to include the item because a particular marketplace requires it or because
the vendor feels that it enhances the product while another vendor may omit the same
item. An implementation which does not include a particular option MUST be prepared
to interoperate with another implementation which does include the option, though
perhaps with reduced functionality. In the same vein, an implementation which does
include a particular option MUST be prepared to interoperate with another
implementation which does not include the option (except, of course, for the feature
the option provides).

EXPERIMENTAL This word describes elements of the system which are still in active development.
Specifications for experimental functionality will likely change in the future and those
changes MAY break implementations built using the experimental specifications
provided here.

ASSIGNED This word is used to describe identifiers associated with data format and protocol
extensions which have been reserved by individuals, or organizations currently in the
process of developing functionality associated with the keyword, but have not
submitted specifications for their effort.

ACTORS

 15

When discussing a simple mail transaction, four distinct actors are involved. For this document, an actor is narrowly

defined by the cryptographic key associated with the actor. In reality, any of the individual actors below could represent

multiple people sharing a single email address, or multiple hosts working collaboratively to support DIME for a single

organizational domain.

Actor Definition
Author The cryptographic identity associated with the creator of a message.
Origin Represents the author’s service provider and the hosts responsible for

providing DIME network services on the author’s organizational domain.
Destination Represents the recipient’s service provider and the hosts responsible for

accepting a DIME message on behalf of the recipient.
Recipient The cryptographic identity associated with the recipient of a message.

ACCOUNT MODES

Security is a flexible term. To accommodate the different types of DIME users, and their radically different needs, the

concept of an account mode has been created. Each mode represents a defined point along the security-functionality

spectrum, and is designed to easily communicate to user’s how an account operates. The primary differentiators

between each mode are where message encryption (or decryption) occurs, and where a user’s private key is stored.

Mode Definition
Trustful In this mode, the server handles all privacy issues on behalf of the user. This

requires a user to trust the server. The assumption is that accounts operating
in this mode will send messages using the Simple Mail Transfer Protocol
(SMTP) and receive messages using the Post Office Protocol (POP) or the
Internet Mail Access Protocol (IMAP). Webmail systems which handle the
encryption functions server-side are also considered to be operating in
trustful mode.

Cautious In this mode, a server is only used to store and synchronize encrypted data.
This includes encrypted copies of a user’s private keys, and encrypted copies
of messages. This mode is designed to provide a user experience comparable
to email today, while dramatically minimizing the amount of trust placed in
the server. Webmail systems which perform encryption inside a user’s
browser are considered to be operating in cautious mode.

Paranoid In this mode, a server will never have access to a user’s private keys
(encrypted or decrypted). This mode is designed to minimize the amount of
trust a user is required to place in their server, at the expense of functionality.
This mode does not support webmail access, and does not allow the user to
access their account from multiple devices without the assistance of an
external method for synchronizing their key ring.

SIGNETS

Signets are broken into two distinct classes: “organizational” signets, which are associated with a domain name, and

“user” signets which are associated with an email address. An email address is defined as a mailbox, or local part, in

16

combination with a domain name. Each actor is associated with a signet. The Author and Recipient are associated with

user signets, while the Origin and Destination are associated with organizational signets. While it is not a technical

requirement, the assumption is that organizational signets will have long lifespans, and that user signets will be rotated

frequently.

Category Definition
Organizational Signet This signet category holds the public keys associated with a domain name.

Optional fields can be used to provide information associated with domain,
such identity information, or access information which allow for the auto
configuration of user clients. Every DIME-enabled domain will have a unique
organizational signet, thus an organization with multiple domains will control
multiple organizational signets. Subdomains may have a unique organizational
signet or rely on the organizational signet of the parent domain. The private
keys associated with organizational signets are used to sign user signets,
access message envelope information, and sign outbound messages.

User Signet This signet category holds the public keys associated with an email address.
Optional fields associated with a user signet can be used to provide identity
information, or advertise other properties associated with an email address.
Every email address is associated with a unique user signet, although a single
user who controls multiple email addresses can control multiple user signets.
The private keys associated with a user signet are used to decrypt incoming
messages and sign outbound messages. Access to a user’s current signing key
is required to rotate a user signet, and thus publish new public keys for an
email address.

The signet data format defines a number of optional fields which have the capable of dramatically increasing the size of

a signet. For efficiency, it is possible to extract and store the relatively small portion of a signet required for

cryptographic purposes. Because the subset of cryptographic fields have been separately signed, it is possible split a full

signet, while retaining the ability to cryptographically validate the resulting core signet.

Type Definition
Core Signet The core signet represents the required cryptographic fields associated with a

signet. Core organizational signets are self-signed, while core user signets are
self-signed by the user, and then counter-signed by the organization.

Full Signet A full signet includes a complete core signet, including its signatures, along
with a number of optional “informational” fields. A full organizational signet is
terminated by a second self-signature, while a full user signet is terminated
by a second organizational signature.

TERMS

For the reader’s benefit, we have attempted to provide definitions for any additional terms used throughout this

document that are unusual, or carry with them specific meanings in the context of this document.

Terminology Definition

 17

Actors See the Actors section above for definitions of the different actors: Author,
Origin, Destination and Recipient.

Alternate Name (AN) The Alternate Name or Alt Name field supplies additional domains associated
with an X.509 certificate.

Advanced Persistent Threat (APT) Advanced Persistent Threats are organized groups capable of continuous,
extremely sophisticated attacks which are capable of devoting significant
resources to achieve success.

ASCII American Standard Code for Information Interchange
Attacker Any unauthorized party attempting to gain access to message data (content,

metadata, etcetera).
Certificate Authority (CA) Certificate Authority whose signature asserts the validity and trustworthiness

of an X.509 certificate.
Consumer A consumer is a general term used to refer to both a signet resolver and a

Message Transfer Agent, or a generic client application capable of sending
commands to a server.

Common Name (CN) The Common Name is the field which provides the domain name associated
with an X.509 certificate.

Distinguished Encoding Rules (DER) The Distinguished Encoding Rules are a binary encoding for X.509 certificates.
DIME The Dark Internet Mail Environment loosely refers to the collection of format,

protocols, and software used to facilitate the automated encryption of email.
DMAP The Dark Mail Access Protocol is the authenticated protocol used to

synchronize keys, submit signet signing requests, access messages and
submit outgoing messages.

D/MIME The Dark Multipurpose Internet Mail Extensions is the encrypted message
format used to encapsulate and protect MIME messages within DIME.

DMTP The Dark Mail Transfer Protocol is the unauthenticated protocol used to
retrieve signets and transfer messages across organizational boundaries.

Domain Name System (DNS) The Domain Name System resolves an arbitrary a string of letters and
numbers into the numeric IP address needed to access the hosts associated
with the given name.

End-to-End Encryption Data encrypted between two endpoints, typically the author and recipient.
Note that for users in the Trustful account mode, the server is the endpoint.

Fingerprint Core Fingerprint. A SHA-512 hash generated from required cryptographic
portion of an organizational or user signet.
Full Fingerprint. A SHA-512 hash generated from the cryptographic and
informational portions of an organizational or user signet.

Ephemeral Fingerprint. A SHA-512 hash generated by combining the current
core user signets for two email addresses.
Root Fingerprint. A SHA-512 hash generated from the required cryptographic
portion of the first signet in a user’s current chain of custody.

Host The computer associated with an IP address returned by a DNS name
resolution and reachable using TCP/IP. This document assumes a host is a
single computer, but it is worth noting that a single host IP address could
reach more than one physical computer.

18

Internet Protocol (IP) The Internet Protocol is a packet based, routable network of interconnected
computers.

Key Ring The private keys associated with a user’s current and former signets.
Key Store (KS) An authoritative source for organizational and user signets is referred to as a

Key Store. Typically, the Key Store is the DMTP host responsible for supplying
signets, although the term itself is independent of the protocol and transport
used.

Management Record The DNS record used to enable DIME support, advertise policies and provide a
cryptographic trust anchor for an organizational domain name.

Man in the Middle A type of attack commonly associated with cryptographic communication
channels where a perpetrator sits between two victims, emulating each party
to the conversation and fooling the endpoints into thinking they are directly
connected. This type of attack allows the perpetrator to monitor and/or
manipulate the conversation.

MDA Mail Delivery Agent (sometimes referenced as Message Delivery Agent), the
MDA is responsible for delivering messages to a recipient’s message store.

MitM See Man in the Middle above; MitM is a type of attack where a perpetrator
sits between two victims to intercept and/or manipulate a conversation.

MS The Message Store holds all of the messages associated with a user. The
message store is sometimes referred to as a mailbox.

MSA The Message Submission Agent is the message handler responsible for
transferring a message from a user’s device to the origin host associated with
an organizational domain.

MTA The Mail Transfer Agent (sometimes referenced as Message Transfer Agent)
is the handling agent responsible for transferring messages between
organizational domains.

MUA The Mail User Agent is a fancy way of referring to a user’s email client, the
MUA allows users to send and receive messages.

OCSP The Online Certificate Status Protocol is used to check with a Certificate
Authority and find the real-time revocation status of an X.509 certificate.

OPA The Organization Privacy Agent handles DIME specific cryptographic
operations on behalf of an organizational domain.

Organization The service provider, corporation or entity associated with a domain name.
Organizational Domain A domain name which excludes any subdomain. An organizational domain is

comprised of a top-level domain extension plus a single additional name
typically associated with an organization.

PA See OPA and UPA, the Privacy Agent is responsible for DIME specific
cryptographic operations.

PFS Perfect Forward Secrecy involves protection by an ephemeral key specific to
the session or message and that the ephemeral key will remain secure if an
associated long-term key is compromised in future.

POK The Primary Organization Key is the key responsible for organizational level
signing operations, which includes signing organizational signets, signing user
signets, and signing outbound messages.

 19

RR A Resource Record refers to the result of a DNS query for a particular domain
name.

SR See Signet Resolver, the resolver retrieves the signet for a domain name or
email address and performs the validation required to authenticate the result.

Signature Signatures are created using EdDSA and the Twisted Edwards curve (and
birational equivalent of Curve25519) commonly known as Ed25519. The
Ed255219 curve is defined as:

x2 + y2 = 1 (121665/121666)x2y2

Signet Resolver The signet resolver is responsible for translating a domain name or email
address into a signet, and is analogous a DNS resolver which translates a
hostname into an IP address. Specifically, a signet resolver locates the
authoritative server for a signet, retrieves it and then cryptographically
authenticates the signet.

Signet Ring The collection of organizational and user signets that have been retrieved and
authenticated by a user’s signet resolver.

SMTP The Simple Mail Transfer Protocol (SMTP) is the traditional protocol used for
the submission and transfer of messages.

SNI The Service Name Identifier is a TLS extension which allows a single IP
address to host TLS services for multiple domains using different X.509
certificates.

SOK The Secondary Organization Key is similar to a POK, and can be used to sign
user signets and sign outbound messages.

TCP The Transmission Control Protocol is the network protocol used to ensure the
reliable delivery, sequencing and reassembly of IP packets.

TLS Transport Layer Security refers to a protocol used to provide an encrypted
channel between two hosts connected using TCP.

TTL The Time to Live refers to amount of time a DNS result is considered valid.
UPA The User Privacy Agent is responsible for the cryptographic operations

associated with an email address and on behalf of a user.
User A person or collection of people represented by a single email address; note

that the term is used throughout this document in a manner that is distinct
from how it is used in reference to access control systems.

20

PART 3: SYSTEM ARCHITECTURE

Introduction

Internet electronic mail (email) is a federated system of written communication which often requires messages to transit

through a series of independent services. Email privacy is made challenging by the need to disclose handling information

to stations along this path. In addition to the usual protection of content, a design goal for secure email must be to limit

the meta-information that is disclosed so that a handling agent only has access to the information it needs to see. The

Dark Internet Mail Environment (DIME)1 achieves this with a core model having multiple layers of key management and

multiple layers of message encryption. The system architecture modularizes functionality and that modularity permits a

variety of implementation and deployment strategies. The data formats are transport agnostic and should permit transit

over alternative infrastructure message transfer services using protocols independent of DIME. Integration with these

alternatives is encouraged, with mechanisms provided for extending functionality and supporting protocol alternatives.

The essential challenge in email privacy is protection against compromised handling agents. Simple wiretapping of transit

channels is reasonably well protected against by Transport Layer Security (TLS) [TLS]. However, TLS operates over only

one Transmission Control Protocol (TCP) hop and email often travels through a significant number of these hops. Every

transfer agent, including the immediate submission and delivery agents associated with the author and recipient(s), may

become compromised [IMA]:

Figure 1 – Traditional Email Handling Architecture

When a handling agent is compromised, the attacker could use the breach to gain access to keys, metadata, message

content or all three. Hence, mechanisms to protect each are needed. DIME builds upon email’s classic distributed

architecture, but incorporates end-to-end encryption for the protection of private information. Each party responsible for

handling a message is associated with an encryption key, and private information is encrypted for that key.

1 Perhaps sending a message through this service could be called “dropping a dime”?

 21

To facilitate automation of the encryption process organizational mail servers provide encapsulated public key

information using an data format called a “signet.” The signet object is retrieved by a signet resolver from the mail host

associated with a recipient’s email address:

Figure 2 - Proposed Email Handling Architecture

DESIGN GOALS

The goal of DIME is to provide a messaging system capable of protecting user privacy. This definition is ambiguous. For

clarity, privacy is more precisely defined as the ability to control access to confidential information. In the context of

email, confidential information is synonymous with information about a message, in addition to the actual message.

The term security is frequently has also been frequently abused. In our context security is used to discuss the

mechanisms a user has to ensure the privacy of a message, and limit the potential for leakage. More security is

equivalent with less information exposure, and a greater degree, or increased level of effort, required to breach the

protections guarding confidential information. Encryption is the primary mechanism used to secure information, and

ensure the privacy of confidential information.

These definitions led to specific deficiencies within the current email infrastructure, and its ability to ensure the security

of confidential information. End-to-end encryption appears to ensure the protection of user privacy, but to ensure its

ubiquitous use, the following technical goals were identified:

22

1. Automate key management, including the: creation, rotation, discovery and validation of keys.

2. Transparently encrypt and sign email messages to ensure confidentiality and author non-repudiation.

3. Resist manipulation by Advanced Persistent Threats (APTs).

4. Link security to the complexity of a user’s password, and the strength of an endpoint’s defenses.

5. Minimize the exposure of metadata to handling agents and service providers.

6. Give control back to the user.

OPERATIONAL DIRECTIVES

The core operational directives for DIME were developed to simplify the adoption of an email system protected by end-

to-end encryption, minimize the information exposed to the minimum required for the system to function, and generally

provide a protocol framework which is capable of protecting user privacy. At a high level, these core operational

directives are achieved through the following elements:

 A handling agent only sees information about its immediate neighbors – the agent from which the message

came and the agent to which it goes next. This specifically means that while the a message transits the open

Internet, it travels inside a TLS tunnel, and the only information visible to (origin, MTA/MSA) host and target

(destination, MTA/MDA) host.

 Author and recipient mailbox addresses are encrypted and then embedded within the message object. The origin

host only sees the author mailbox address and the destination host only sees the recipient mailbox address.

 The origin host does not see the recipient mailbox address and the destination host does not see the author

mailbox address unless the author and recipient are controlled by the same organization.

 Only the author and recipient can decrypt an entire message. The origin host and destination host only have

access to their portion of the encrypted envelope and to the overall message structure.

 Messages are tree structured and content encryption is per leaf with independent keys for each leaf, permitting

access to individual parts of the message without having to process other parts. This is especially helpful for

clients with limited resources and/or bandwidth when accessing messages in a remote message store. It also

permits other handling actions, such as the validation of message signatures, without needing to download the

entire message through the use of tree signatures.

 Validation of signet (keys) is accomplished without the use of a formal CA construct, and no single source of

information is automatically trusted. The basic validation model is to obtain a signet from a credible primary

source and then confirm it with another pre-authenticated source. The two pre-authenticated sources currently

available are a management record signed using DNSSEC or a TLS certificate signed by a recognized Certificate

Authority (CA). Both can be cryptographically traced by a signet resolver back to a trusted key that is shipped

with the resolver.

 To the extent possible, layers of encryption have been used to mitigate the potential harm a nefarious actor can

accomplish with the breach of a single piece of the DIME architecture.

 23

 Public conveyance can be over a variety of transport services. This greatly lowers the barriers to DIME adoption.

This document provides a description of DIME’s abstract network service architecture. An abstract network service

architecture is distinct from any particular software design that might implement it, or specific scenarios that might

derive from it. In particular, implemented software modules might combine or separate abstract network components.

For example, the user agent and the message store might be implemented together. Alternatively, the user agent might

be split between a simple user interaction module and a remote user ‘semantics’ module. (This is, in fact, the usual

method of providing webmail user services; the variant of webmail that has the server download code to the user’s

browser dynamically is actually a small operational distinction that does not affect the model.)

FUNCTIONAL COMPONENTS

DIME’s additions to the classic email architecture entail a few security-related modules, which are available to authors

and recipients. The basic architecture has four categories of components:

 Classic email agents

 Privacy processing agents

 Key stores and signet resolvers

 Encrypted message objects

Figure 3 - DIME Functional Component

TRANSPORT

DIME can be adapted to a variety of message transport or transfer services, with the choice of channel creating trade-

offs between wiretapping and traffic analysis protection, balanced against scaling and interoperability requirements.

Using Simple Mail Transfer Protocol (SMTP) to transport messages would ensure maximum reach but would have

24

provided limited protection. The relatively similar Dark Mail Transfer Protocol (DMTP) is designed to provide similar reach

(if adopted) with less metadata exposure.

Figure 4 - DIME Transport

MESSAGE OBJECT

In terms of handling and protection, each message is encrypted with an ephemeral key accessible by the author and one

recipient. The basic message protection model then encrypts each component, called a chunk, to a distinct, ephemeral

symmetric key; this includes encrypting each part of the message content (and attachments), with different keys, to

permit separable handling and protection. Access to keys is limited to essential actors: author, origin (submission server),

destination (delivery server), and recipient. For example, the origin needs to see information about the destination, but

not about the recipient. Messages are decrypted only when the information is needed. A chunk has one or more

encrypted key slots. For each actor permitted to decrypt a chunk, there is a separate slot, with its own copy of the

symmetric key; the key is encrypted to the actor’s signet. A chunk that can be processed by three actors will have three

copies of the symmetric key associated with that chunk. The representation of a message is a tree-structured object:

Figure 5 - DIME Message Object

The basic structure is:

 25

 Wrapper surrounding the entire message
 Next-Hop transit handling information, in cleartext, for the currently-active transport
 Envelope, with Origin and Destination information, separately encrypted
 Meta, including a the commonly used header fields separated from the remaining header fields
 Message content, including the body (and possibly attachments) [IMF]
 Signatures, including an author and an origin signature

The envelope has a further sub-structure, with each portion being independently encrypted, in order to permit
selectively hiding information. The meta section contains headers such as the To, From, Subject and Date traditionally
included with messages sent using SMTP [SMTP].

CLASSIC EMAIL AGENTS

The traditional email user and handling agent functional components are present in DIME. These are:

 MUA - Mail User Agent
 MSA - Message Submission Agent
 MDA - Mail Delivery Agent
 MTA - Mail Transfer Agent
 MS - Message Store

Messages in the Message Store (MS) have the content leaf nodes encrypted, with the structure in the clear. This permits

selectively accessing leaves, which is needed by resource-limited devices, or clients accessing a remote message store

over high-latency/low throughput connections.

PRIVACY PROCESSING AGENTS

DIME message processing semantics and cryptographic functions are handled by two additional system modules: the

Organization Privacy Agent and the User Privacy Agent.

ORGANIZATION PRIVACY AGENT

The Organization Privacy Agent (OPA) interfaces with a user’s email agent and the rest of the Internet. It facilitates user

key management and creates a domain-name based package around the personal addressing and content of messages.

It creates a secure transit channel that hides all information about the message using transport layer security, and

provides access to the envelope information needed for immediate handling. This is accomplished through three

functions:

Signing: The authenticity of a user’s signet or the source of an arbitrary message is asserted by a cryptographic

signature generated by the Organization.

Encryption: The Organization wraps and unwraps the full user email address, so that only the associated domain
name is visible to the handling agent.

Channel: The message is transmitted over a channel protected by TLS so that only a message structure is visible

during transit. TLS is responsible for providing perfect forward secrecy against network eavesdroppers.

26

It is worth emphasizing that the message object is encrypted separately from the encryption used for encrypting the

transmission channel. Thus, even if a TLS channel is compromised, the only information gained by the attacker is the

message structure. Likewise if the organizational encryption key is compromised, without the ability to compromise the

TLS tunnel, nothing is gained. For a complete discussion of different potential scenarios see the Attacks and Mitigation

section.

USER PRIVACY AGENT

The User Privacy Agent (UPA) provides the cryptographic functions required by a user’s email agent. It facilitates key

management, the retrieval of signets for recipients, alerts interactive users to potential signet issues, and facilitates the

automatic encryption of messages. Because the encryption process can occur automatically it is possible for the UPA to

reside on the server, or the user’s device. Assuming the UPA resides on the user’s device, it performs the following:

Encryption: The message envelope is encrypted for transit, to be unwrapped as necessary by handling agents along

the way. As such the author address and the recipient domain are visible to the origin host, while the

recipient address and author domain are visible to the destination host.. Only the UPA for the author and

the recipient are able to see both pieces of the envelope. Similarly, only the UPA for the author and

recipient are able to access the message content chunks.

SIGNET RETRIEVAL SERVICES

Signet lookup and retrieval services are provided by a purpose-built Key Service (KS), modeled after the Domain Name

System (DNS) architecture [DNS]. A Privacy Agent (PA) makes the request to a local signet resolver that in turn locates

and queries the appropriate authoritative KS. Lookups use tailored Resource Records (RR) provided by a DNS resolver to

locate the KS and validate the retrieved signet.

Figure 6 - Signet Lookup Services

 27

DIME avoids using a classic Certificate Authority (CA) mechanism for validating the signet’s association with a name or

address. It does this with a simpler, two-level mechanism:

 An organization with a domain name certifies individual users. The organization’s signet is available through (at

least) two mechanisms (an authoritative KS and confirmed using the management record signed using

DNSSEC). The combination serves as relatively independent confirmation. If the management record lacks a

DNSSEC signature, then validation is performed using the global-ledger or by confirming the TLS certificate

supplied by the authoritative KS. Only the latter requires that a TLS certificate be signed by a recognized CA.

 A user signet supplied by the organization KS pairs key information with a user email address. It includes a

variety of other attributes. Unlike a classic CA-based certificate, a DIME signet is not automatically trusted.

Rather the evaluator of it treats it as input, then seeks to confirm the signet using another source, such as the

organizational signet signature, or if the signet ring holds a previously authenticated result, by linking the Chain

of Custody signature with the previously authenticated user signet.

28

PART 4: MANAGEMENT RECORD

A Dark Internet Mail Environment (DIME) management record is published in the Domain Name System (DNS) system

and serves as the cornerstone for a DIME-enabled organizational domain. The management record advertises policies

and hostname information and provides the cryptographic trust anchor for all DIME related functionality. The existence of

a management record determines whether messages addressed to a particular domain should be sent using the DIME

protocols, or as “naked” messages using the Simple Mail Transfer Protocol (SMTP). Organizational domains lacking a valid

management record must be considered “legacy” and Mail Transfer Agents (MTAs) should apply any applicable policies

regarding the delivery of naked messages.

INTRODUCTION

The management record is used, primarily, by signet resolvers and MTAs, which we collectively refer to as consumers. A

signet resolver will use the management record to locate an organization’s Key Service (KS) and validate organizational

signets, while an MTA may retrieve a management record when it needs to deliver messages across organizational

boundaries.

The only required field, and the primary purpose for a management record, is distributing the Primary Organizational Key

(POK). The POK is a public key used for organizational signing operations, and whose corresponding private key is

required to sign the organizational signet. The management record may also provide signatures for Transport Layer

Security (TLS) certificates. If the management record has been signed using DNSSEC [DNSSEC], the TLS field signatures

may be used to validate TLS certificates, in addition to, or in lieu of, a Certificate Authority (CA) signature. If the

management record lacks a valid DNSSEC signature, then organizational hosts must still present an TLS certificate signed

by a recognized CA.

A management record may also stipulate the signet expiry and refresh periods for a domain, advertise its policy in

regards to the accepting/sending messages from legacy domains, and dictate how subdomains should be treated by

DIME services. The management record may also provide addressing information for an organization’s mail servers.

LOCATION

Signet resolvers must search for the management record using the “DIME” QTYPE [TBD] first. If the request fails, a

resolver must also query the target domain using the “TXT” QTYPE [TXT]. When searching for a resource record using the

“TXT” QTYPE a resolver must prefix the target domain with “_dime” to avoid conflicts with other uses for the TXT QTYPE

[SRV]. The fully qualified domain name for a management record stored using the TXT QTYPE would be

“_dime.example.tld,” if the organizational domain was “example.tld.”

Signet resolvers attempting to locate the applicable management record for email addresses using a subdomain, such as

“user@sub.domain.example.tld,” must use an increasingly specific search pattern. Starting with the base organizational

domain, resolvers must continue by working towards the specific subdomain supplied until they encounter a

management record with the “subdomain” policy field equal to the value “strict,” or the resolver reaches the specific

fully qualified subdomain under consideration. For the domain “sub.domain.example.tld,” a resolver must begin by

 29

requesting the DIME resource record for “example.tld” or if necessary, using the TXT QTYPE and the name

“_dime.example.tld.” Unless a subdomain policy of “strict” is encountered, a resolver must continue by searching for the

DIME record using “domain.example.tld” or a TXT record using “_dime.domain.example.tld.” As the final step in our

example, a resolver must search for a DIME resource record using the fully qualified domain or a TXT resource record

using “_dime.sub.domain.example.tld.”

If the final search does not return a valid management record, and the nearest ancestor domain returned a management

record with a subdomain policy of “explicit,” then a signet resolver must assume the subdomain lacks DIME support and

consider it a legacy domain. Alternatively, if the nearest ancestor management record supplied a subdomain policy of

“loose” then the domain must be considered DIME-enabled, and the ancestor organizational signet and management

record must be applied to the target subdomain. The increasingly specific query process ensures management records

associated with ancestor domains may assert control over subdomains.

TEXT RECORDS

Operational considerations must be made if the management record is published using the TXT QTYPE. The DNS rules

regarding TXT records stipulate that individual strings have a maximum length of 255 characters. As such, management

records that exceed 255 must be split across strings. For optimal compatibility, management records must not split

individual fields across strings.

While most DNS resolvers allow responses up to 4096 octets using UDP, a handful of non-conformant, but widely

deployed DNS implementations truncate DNS responses over UDP at 512 octets (primarily Cisco PIX/IOS

implementations). Organizations seeking to interoperate with the widest variety of consumers should ensure their

management records have an overall length less than 512 octets.

The authoritative DNS servers for management records should support DNS queries using TCP so that resolvers

experiencing problems with UDP responses being truncated may retrieve management records using TCP.

SECURITY

Internet email, like all domain name centric network services, depends upon the reliability and security of the global DNS

system. Without DNS, email would cease to function, so despite its shortcomings2, the DIME security model is dependent

upon the reliability and security of the DNS system. For this reason we strongly recommended organizations deploy

DNSSEC to prevent the manipulation of DNS responses for their domain.3 Consumers encountering a domain protected by

DNSSEC must authenticate the entire signature chain, between the root DNS server key and the target domain. If the

2 DNSSEC only provides protection against tampering. It does not prevent attackers from blocking DNS responses entirely, and it does
not protect the confidentiality of DNS queries, or the results. By tracking which domains a victim requests the management record
for, an eavesdropper is able to track which domains a victim is corresponding with. This deficiency is one of several that will make it
difficult to reduce the leakage of metadata beyond the organizational domain level.

3 Because the number of domains protected by DNSSEC remains a relatively small percentage, and because organizations will benefit
significantly from DIME, even if their own management record is unsigned, we have decided not to make DNSSEC a prerequisite.

30

signature chain fails to validate, a consumer must discard the name server response and immediately notify the user a

fatal error occurred with potential security implications.

An attacker could also manipulate unsigned management record responses, substituting the “pok” and “dx” field values

to facilitate Man in the Middle (MitM) attacks on domains lacking DNSSEC protection. Attacker could also initiate

downgrade attacks against unsigned domains by replacing valid responses with a “name error” [DNS]. The “name error”

response may trick a systems into sending a naked message over SMTP that otherwise would have been encrypted as a

D/MIME message and sent securely over DMTP.

If a management record is protected using DNSSEC, no other validation paths are required. A management record

protected by DNSSEC is considered a pre-authenticated verification source. Authenticating organizational signets using

signed management records is the preferred form of validation. If the management record is unsigned, a domain will

need to support another pre-authenticated validation source or risk having their organizational signet trigger a warning,

or be rejected outright by some consumers. Consult the Validation section of the Signet Data Format specification for a

complete discussion of possible pre-authenticated validation sources.

EXPIRATION

The expiry value in a management record dictates how long an organizational signet should remain valid, even after the

management record has been removed. To prevent attackers with control over the DNS servers for a domain from

causing a domain to downgrade into legacy mode prematurely, a resolver must never reduce the amount of time

remaining for a cached signet because a smaller “expiry” value was retrieved during a refresh attempt. This rule must

only be applied to the expiry value; all other fields may be overwritten by an updated management record even if the

resolver ignores the expiry value. This rule should only be applied until the amount of time corresponding to the

difference in expiry values has lapsed.

FIELDS

Management records provide information using fields, with each field being comprised of a name/value pair. The table

below is provided to indicate the properties associated with each field. The table specifies which fields are required,

recommended, or optional, what the type of value each field provides, and whether a default value is applied when the

field is absent.

Management records should use the short version of a field name when specifying values, but may use the long version.

Consumers must be capable of parsing and recognizing fields using the long name. Management records must always

use the lowercase field names and enumerated values. Consumers must ignore fields using the improper case.

A field is properly defined as a name followed immediately by an equal sign (ASCII value 0x3d) and the desired value. A

field ends when the first space (ASCII value 0x20) or semicolon character (ASCII value 0x3b) is reached. A field value

may also end because the boundary for a management record is reached, and only the last field value may end without a

terminating character. Tab characters (ASCII 0x09) must be treated as spaces, and extraneous whitespace, if discovered,

must be ignored.

 31

A single field definition must not span multiple TXT record strings. This means every string must end with either a space

or semicolon, with the exception of the last one. This requirement ensures resolvers which concatenate TXT strings

together are processed the same as resolvers which automatically insert whitespace between TXT strings.

Fields may be defined in any order. Fields which allow multiple values must specify every value as a fully formed field,

using the complete name/value sequence defined above. If an additional value is encountered for a field which does not

support multiple values, a resolver must use the first valid field value encountered. Resolvers that encounter additional

instances of unique fields may optionally warn users, or silently ignore them.

DEFINITIONS

Management records must only use the fields defined below. If a consumer encounters a management record with an

unrecognized field name, or encounters a name without a value, it must reject the entire management record and notify

the user a fatal error occurred. If the consumer is searching for a subdomain management record, and encounters an

ancestor with an invalid management record, the invalid record should be ignored completely, and consumers should

continue searching as if the invalid manage record was never encountered.

Name Short Disposition Multiple Type Default (Where Applicable)
primary pok Required Yes Armored Public Key
tls tls Recommended Yes Armored Signature
version ver Optional No Numeric 1
refresh ref Optional No Numeric 1
expiry exp Optional No Numeric 30
syndicates syn Optional Yes Hostname Literal
deliver dx Optional Yes Hostname Literal
policy pol Optional No Enumerated mixed
subdomain sub Optional No Enumerated mixed

DESCRIPTIONS

PRIMARY (pok)

The primary field provides the POK, or more specifically, the public key used to authenticate signatures supplied by a

domain’s organizational signet. Signet resolvers must ensure the organizational signet they retrieve for a domain name is

signed using a POK value found in the management record. While it is possible for a domain to provide multiple POK

values in a single management record, a signet resolver must ensure all of the signatures provided by a signet were

created using the same private signing key, and that all of the signatures are valid.

If an organization rotates their organizational signet, they should leave the POK used by the previous organizational

signet in their management record until the expiry period has lapsed, and any signing keys unique to that signet are no

longer in use. This may require resigning messages or user signets. Alternatively, if an organizational signet is rotated,

32

but the former private key has not been compromised, a the previous POK value may be removed from the management

record and published as a Secondary Organizational Key (SOK).

All of the POK values must be valid base64 strings precisely 44 characters in length, otherwise a management record

must be rejected and the user notified. The field value once decoded must be precisely 33 octets. The decoded octets

must begin with the value {0x40}, which indicates the remaining 32 octets represent a compressed Ed25519 public key.

[PGP-EdDSA] The public key must be in the compressed little endian format defined by the Ed25519 paper and used by

the Ed25519 reference implementation [EdDSA].

The following is an Ed25519 public key, provided in hexadecimal form:

Qpub: 0x3f098994bdd916ed4053197934e4a87c80733a1280d62f8010992e43ee3b2406

If this same public key was prefixed with an octet value of {0x40} and then converted to a base64 value, the resulting

POK field would appear in a management record as:

pok=QD8JiZS92RbtQFMZeTTkqHyAczoSgNYvgBCZLkPuOyQG

TLS (tls)

The X.509 certificates for DMTP hosts may be validated using the signatures provided by the TLS field. The value for a

TLS field represents a 64 octet Ed25519 signature expressed in the form SIG = (R || S), where SIG represents the 64

octet signature created by concatenating the compressed R and S values generated using the EdDSA algorithm and the

private key associated with a published POK value. To verify a TLS field, consumers must supply the X.509 certificate, in

the binary Distinguished Encoding Rules (DER) format, and confirm the signature validates against a POK value provided

in the same management record, using the EdDSA algorithm [EdDSA].

The TLS field value is generated by encoding the 64 octet Ed255219 signature using base64. If a conventional base64

implementation is used, then the 2 trailing pad characters must be stripped off to yield the correct value. Resolvers must

reject the entire management record if one the TLS values provided is not a valid base64 string precisely 86 octets in

length.

If one, or more, values are provided in the DIME management record, then the TLS certificate received while connecting

to a DMTP host must match one of the provided values. This requires organizations using multiple certificates to sign and

provide signatures for all of the certificates used to protect DMTP connections. If an organization is unable to provide TLS

signatures in the management record for all of the X.509 certificates in use, it must remove all of the TLS field values

from the management record and obtain a signatures for its X.509 certificates from a recognized CA instead.

If a consumer encounters a DMTP host using a certificate that does not match any of the provided TLS field signatures, it

must cleanly shutdown the TLS connection and disconnect, treating the connection attempt as a failure. If the threshold

for connection failures has not been reached, and additional hostnames are available the consumer should continue onto

the next host until it discovers one using a certificate with a valid TLS field signature.

Management records protected by DNSSEC which also provide TLS field signatures may use self-signed certificates. If the

management record is not protected using DNSSEC, but still provides a TLS field signature, a consumer should ensure the

 33

certificate matches one of the available signatures first, followed by the validation rules required by TLS v1.2 [TLS],

which require X.509 certificates to be signed by a recognized CA.4 Consult the Certificates section of the DMTP

specification for a complete discussion of TLS certificate validation rules for DIME.

If a TLS certificate generated the following signature values, provided here in hexadecimal form:

R: 0x56f90cca98e2102637bd983fdb16c131dfd27ed82bf4dde5606e0d756aed3366
S: 0xd09c4fa11527f038e0f57f2201d82f2ea2c9033265fa6ceb489e854bae61b404

Then the corresponding TLS field would appear in a management record as:

tls=VvkMypjiECY3vZg/2xbBMd/Sftgr9N3lYG4NdWrtM2bQnE+hFSfwOOD1fyIB2C8uosk
DMmX6bOtInoVLrmG0BA

SYNDICATES (syn)

The syndicate field provides the fully qualified domain name of an alternate host authorized to provide signet

information for a domain name. The value must be a valid hostname literal and not an IP address. If an IP address is

provided as the value, a consumer must reject the management record entirely and notify the user. If the value is a valid

hostname literal, but does resolve into a valid IP address, or the DMTP connection attempt fails, then the consumer

should ignore value. Consult the Connections section of the DMTP specification for additional details on how hostname

literals should be used by a signet resolver.

If a domain was syndicating signets to “syndicate.example.tld” then the syndicate value would appear in a management

record as:

syn=syndicate.example.tld

DELIVER (dx)

Provides the fully qualified domain name for authoritative signet lookups, and for delivering encrypted D/MIME

messages5. The value must be a valid hostname literal and not an IP address. If an IP address is provided, a consumer

must reject the entire management record and notify the user. If the value is a valid hostname literal but does not

resolve into a valid IP address, or the connection attempts fail, then the consumer should ignore the value.

4 DNS-Based Authentication of Named Entities (DANE) [DANE] provides similar functionality, but lacks widespread deployment. The
primary functional difference is DANE records only support the publication of complete certificates, a public key or a hash value. DIME
uses the POK and cryptographic signatures to validate certificates. DANE also requires (by specification and not function) the
deployment of DNSSEC, while DIME decided to classify DNSSEC support as a strong recommendation.

5 The decision to provide this information in the management record, rather than use a SRV record, was made because the latter
would allow arbitrary port numbers. We felt that delivery hosts should be locked to a specific port, which allows network
administrators to detect and/or block nefarious deployments. We also felt the port needed to be lower than 1,024 because binding to
ports in this range requires elevated permissions on the most widely deployed operating system. Port 26 was chosen because it is
currently unused, and because of its proximity to port 25 (which is used by SMTP).

34

If a domain, which supports single protocol mode DMTP connections on the host “dmtp.example.tld,” then the

corresponding delivery value would appear in a management record as:

dx=dmtp.example.tld

If a consumer is unable to establish a DMTP single protocol mode connection with any of the hosts provided as deliver

field values, or if the management record does not include the deliver field, then a consumer must use the mail exchange

(aka “mx”) record for the target domain instead. When attempting to setup a DMTP connection to host found in a mail

exchange (aka “mx”) record, consumers must use dual-protocol mode. For additional details on the processing multiple

values, connection failures, and the different the protocol modes, consult the Connections section of the DMTP

specification.

VERSION (ver)

The version field controls how a management record should be parsed and validated. Only a single value for this field,

“1,” is considered valid. If a consumer encounters a different value for this field, then the management record format has

changed and a consumer must assume the changes are incompatible with this specification. As a result, consumers must

reject management records which supply a value other than “1” with a fatal error. For management records which

explicitly stipulate the management record version, the field must appear as:

ver=1

REFRESH (ref)

The refresh value controls how often a resolver should check whether a cached signet is current. The value is expressed

in days. If the field is missing from a management record, then a resolver must assume the refresh period is 1 day. A

signet only needs to be refreshed if the period has expired, and a user receives a message, or attempts to send a

message to a recipient which will require the use of the signet. The complete refresh field, if provided explicitly should

appear as:

ref=1

EXPIRY (exp)

The expiry value controls the number of days a signet must be considered valid, even if the resolver is unable to refresh

the cached signet value. Consumers should continue using cached signets for signature validation, and message

encryption up to the number of days specified in the expiry value, starting with the last successful refresh or retrieval of

the signet. Signet resolvers should apply the expiry to management records as well, and ensure they continue treating

domains as DIME-enabled, even if a management record is removed, for the number of days specified as the expiry

value in the last successful retrieval. Note that management record refresh periods must not reduce the amount of time

a domain is considered DIME-enabled when it retrieves updated management records. See the Expiration section above

for details.

 35

If the expiry field is missing a default value of 30 day must be applied. If a management record contains an explicit

refresh value larger than the expiry value, then the refresh value should be used as the expiry value. An expiry value of

30 or higher is recommended for domains with no plans of returning to legacy mode. If the default expiry value was

specified explicitly by a management record, it would appear as:

exp=30

POLICY (pol)

Provides the policy applied when transferring messages between origin and destination domains. Message acceptance

and delivery must conform to the advertised policy when one of the organizations involved is DIME-enabled. D/MIME

messages must be rejected when the delivery does not conform to the policy, or if the organization does not have a

valid management record. In the absence of an explicitly defined policy field, resolvers must apply a default policy of

mixed. If a resolver encounters a management record with a policy value that does not match one of the three

enumerated values, then the entire management record must be rejected. The table below illustrates the appropriate

outcome for a message between two domains with each of the possible policy dispositions.

Figure 7 - Policy Dispositions

The formal definitions for each of the enumerated policy values are:

 Experimental. This organizational domain will be sending both D/MIME and naked messages. Destinations with

policies of experimental or mixed should accept both, while those with a policy of strict must reject naked

messages. If a domain does not have a management record available then this organization supports the

delivery of naked messages. Organizations with a policy of experimental should publish valid signets for all

DIME-enabled addresses, or the appropriate error code for valid addresses which are not yet DIME-enabled.

Senders with a policy of mixed or experimental may choose to deliver naked messages if they encounter an

experimental policy for the destination and the recipient addresses does not have a valid signet available.

Se
nd

in
g

D
om

ai
n

Receiving Domain

Legacy

Experimental

Mixed

Strict

Legacy Experimental Mixed Strict

Naked Naked Naked X

Naked Dark/Naked Dark

Naked Dark/Naked Dark Dark

Dark Dark DarkX

Dark/Naked

36

 Mixed. A mixed policy domain should send D/MIME messages to DIME-enabled domains, and naked messages to

legacy domains. Likewise, a mixed policy domain will accept naked messages from legacy domains and D/MIME

messages from DIME-enabled domains. Domains in mixed policy mode must ensure they only accept D/MIME

messages from other DIME-enabled domains advertising a policies of strict or mixed.

While mixed policy domains must send D/MIME messages to experimental policy domains by default, they may

choose to send a naked message if the signet resolution process for a recipient fails with a permanent error

code. Signet resolutions resulting in temporary errors should be retried. Likewise a mixed policy domain must

accept both D/MIME and naked messages from domains with a policy of experimental.

 Strict. This domain must only accept D/MIME messages and must only send D/MIME messages. If a strict domain

encounters a recipient domain without a management record or if signet resolution fails, the send attempt must

also fail.

A policy field value of “mixed” would appear in a management record as:

pol=mixed

SUBDOMAIN (sub)

Determines whether a resolver should apply the management record to subdomain addresses. In the absence of an

explicitly defined subdomain field, resolvers must apply a default value of mixed. If a resolver encounters a management

record with a subdomain value that does not match one of the three enumerated values, then the entire management

record must be rejected.

The formal definitions for each of the enumerated subdomain values are:

 Explicit. Subdomains must provide a management record and organizational signet. The absence of management

record results in a subdomain being classified as legacy.

 Mixed. Subdomains may supply a management record and organizational signet, which are used instead of the

parent domain. If the management record is missing, the values and organizational signet of the parent should

be applied to the subdomain address.

 Strict. Subdomains must always use the management record and organizational signet of the parent domain

which supplies this value.

A subdomain field value of “mixed” would appear in a management record as:

sub=mixed

EXAMPLES

At a minimum, all legal DIME management records must provide a POK value. All other values are optional, with default

values being applied in the absence of a version, refresh, expiry, policy and subdomain field. In the absence of a deliver

 37

field, a domain’s mail exchange (aka “mx”) DNS record is used to supply the DMTP host. As a result a simple, but valid,

DIME management record might look like:

pok=QD8JiZS92RbtQFMZeTTkqHyAczoSgNYvgBCZLkPuOyQG

DIME management records should specify values for the recommend field TLS, so that resolvers may validate DMTP

connections using the TLS provided upon connection. A simple DIME management record which provides a signed TLS

value might look like:

tls=VvkMypjiECY3vZg/2xbBMd/Sftgr9N3lYG4NdWrtM2bQnE+hFSfwOOD1fyIB2C8uosk
DMmX6bOtInoVLrmG0BA pok=QD8JiZS92RbtQFMZeTTkqHyAczoSgNYvgBCZLkPuOyQG

A complicated DIME management record, with all of the fields specified, might look like:

tls=VvkMypjiECY3vZg/2xbBMd/Sftgr9N3lYG4NdWrtM2bQnE+hFSfwOOD1fyIB2C8uosk
DMmX6bOtInoVLrmG0BA pok=QD8JiZS92RbtQFMZeTTkqHyAczoSgNYvgBCZLkPuOyQG
pol=mixed sub=strict dx=dmtp.example.tld syn=mirror.example.tld ref=1
exp=30 ver=1

The same complicated DIME management record could also use semicolons as the field delimiter, which would result in it

looking like:

tls=VvkMypjiECY3vZg/2xbBMd/Sftgr9N3lYG4NdWrtM2bQnE+hFSfwOOD1fyIB2C8uosk
DMmX6bOtInoVLrmG0BA;pok=QD8JiZS92RbtQFMZeTTkqHyAczoSgNYvgBCZLkPuOyQG;
pol=mixed;sub=strict;dx=dmtp.example.tld;syn=mirror.example.tld;ref=1
exp=30;ver=1

38

PART 5: SIGNET DATA FORMAT

Introduction

This specification details the format and semantics for the signet data format. The Dark Internet Mail Environment (DIME)

uses the signet data format to transfer cryptographic information for use in encryption and signing operations. A signet

carries with it signatures which must be evaluated by the consumer when determining whether to accept the validity of

a signet for an organization or user identity. In addition to the required cryptographic information, a signet may be used

to advertise information about the signet owner, or information used to facilitate other non-cryptographic functions

commonly supported by DIME implementations.

The signet data format requires a small number of “cryptographic” fields containing public keys and signature data. Only

the fields required to facilitate the sending and receiving of encrypted email are required. However the signet

specification has also defines a number additional “informational” fields, whose use is entirely optional, but allows for

the distribution of various fields along with a signet. These optional fields are designed to provide biographic information,

facilitate optional functionality, and improve the overall user experience.

The signet data format also provides a mechanism for providing an unlimited number of “undefined” fields. Undefined

fields provide an arbitrary name and data value, and like the informational fields, are entirely optional. If provided, the

undefined fields may be used to carry arbitrary data items. Undefined fields may provide information which is useful in a

specific context, or to facilitate functionality unrelated to DIME.

GROUPINGS

CLASSES

Signets are broken into two distinct classes: “organizational” signets, which are associated with a domain name, and

“user” signets which are associated with an email address. An email address may defined as a mailbox, or local part, in

combination with a domain name. Every signet carries a number of data elements organized into individual units called

“fields.” This specification details a number of “defined” fields, which are all associate with a unique numeric type

identifier and used to carry data which conforms to the provided validation rules. Signets may also carry with them an

unlimited number of “undefined” fields, which use a single numeric type identifier, with each undefined field providing its

own arbitrary name and value.

TYPES

There are two signet types, with the type primarily used to communicate whether a signet consists of the cryptographic

fields, or a combination of the cryptographic fields and the informational fields. A “cryptographic signet” indicates that a

signet only contains the cryptographic fields, while the term “full signet” indicates both the cryptographic and

informational fields are included in a signet. Since the informational fields are entirely optional, it is possible for a signet

resolver to request what is technically defined as a full signet, but only receive a cryptographic signet.

 39

MODIFIERS

The term “root signet” is a modifying term, which refers to the first cryptographic signet in a chain of custody. The class,

user, and the type, cryptographic, are implied because the chain of custody is built using cryptographic signets, and

because only user signets provide custody signatures. Unless specified, root signet references are for the root signet

linked to a user’s current signet. The term “identifiable” is also a modifier and is used to indicate that a full or

cryptographic signet includes the identity fields.

CATEGORIES

Signet fields are broken up into three field categories, with each category associated with a range of numeric field

identifiers. Fields always appear in order, and are broken into the categories: “cryptographic,” “informational,” and

“identity.” The informational are further subdivided into three subcategories, the “common” fields, which consists of

fields shared by both signet classes, the “distinct” fields, which are distinct to each signet class, and the “special” fields

which are shared between the classes, but require special processing.

FIELD IDENTIFIERS

Figure 8 – Signet Groupings

40

The numeric signet field types have been ordered to ensure specific data items are provided in the proper sequence. This

ensures certain carefully selected to create specific security, flexibility, and functional properties. They have also been

divided into ranges, to aide cognition whenever possible.

RANGES

The cryptographic fields occupy the range 1 through 15 and provide public key information, and the signatures used to

assess the validity of a signet. Informational fields occupy the range 16 through 253 and are all optional. The fields 254

and 255 are the identity fields.

Field Ranges Category
1 – 15 Cryptographic Fields

16 – 253 Informational Fields
254 - 255 Identity Fields

The informational fields are broken into 3 subcategories. Field identifiers shared by organizational and user signets are

called “common” and occupy the range 16 to 127. Fields in the range 128 to 250 will always be different, or “distinct,”

between organizational and user signets. All of the common and distinct fields are variable length value fields, using a 2

octet length parameter.

The undefined field identifier, 251 {0xFB}, and the image field identifier, 252 {0xFC}, are grouped together in the

“special” subcategory, because both fields use unique binary layouts.

Field Ranges Subcategory
16 – 127 Common Informational Fields

128 – 250 Distinct Informational Fields
251 - 252 Special Informational Fields

253 Full Signet Signature

RESERVED

The unused field identifiers in the cryptographic portion of a signet are reserved for future use. Parsers encountering a

signet with a field type that falls outside of these ranges must reject the signet as invalid.

For organizational signets, fields 0 {0x00}, and 5 {0x05} through 15 {0x0E} are reserved for future use. All organizational

signets conforming to this specification must ensure they only provide fields in the ranges: 1 {0x01} through 4 {0x04}

and 16 {0x0F} through 255 {0xFF}.

For user signets, fields 0 {0x00}, and 7 {0x07} through 15 {0x0E} are reserved for future use. All user signets conforming

to this specification must ensure they only provide fields in the ranges: 0x01 through 0x06 and 0x0F through 0xFF.

ORDERING

All fields within a signet must be sorted according to their single octet numeric type, and appear in then appear in

ascending order. If a consumer encounters a signet which does not conform to this field order, or if a signet parser

 41

encounters a unique field multiple times, then the signet must be considered malformed. If either error occurs among the

informational fields, then a parser may choose to discard the informational fields and only retain and use the

cryptographic signet.

Undefined fields all carry the same numeric identifier, which is used for each undefined field a signet carries. These

undefined fields should be sorted lexicographically by codepoint using the name parameter. However a consumer must

not assume this sort ordering has been applied, and act accordingly when searching for a specific undefined field.

Parser implementation which encounter multiple instances of an undefined field with an identical name parameter must

only return the first occurrence of the name by default. A parser may provide an alternative method of returning all of

the undefined fields matching a particular name using an alternate interface, for use by functionality which explicitly

expects to encounter multiple values for the same undefined name.

BINARY LAYOUTS

The signet data format is a binary schema, which relies on numeric values to convey information and facilitate parsing.

The binary values defined by this specification will always use network byte order, which is defined as a big endian

representation, requiring the most significant byte to be stored in the smallest address, and the least significant byte be

stored in the largest address. Implementations running on little endian systems will need to convert the values to ensure

proper processing. 6

SIGNET HEADER

All signets must start with a 5-octet header. The first 2 octets provide a magic number indicating the data type. Signets

conforming to this must set the first 2 octets to 1776 {0x06F0} for organizational signets, and 1789 {0x06FD} for user

signets.

The remaining 3 octets are used to provide the length of the remaining binary signet data, without the 5 octets used by

the object header. Since the length parameter is 3 octets, signets have a technical limitation of 16,777,220 octets or

16,777,2157 for the signet data plus the 5 octets for the header. Signet resolvers and parser implementations

conforming to this specification must be capable of handling signets up to their maximum possible size.

Signet parsers must reject signets with unrecognized magic numbers, and generate an error when they encounter object

headers that begin with an unrecognized identifier. The signet format has been designed to allow for future revisions of

this specification to add new defined fields without breaking existing implementation. As a result, the only time the

magic number will be altered is when it becomes necessary to alter the cryptographic fields or make an alternation that

is incompatible with the current format.

[2 octet] [Magic Number]
[3 octets] [Signet Size]

6 The decision to use a big endian number encoding is not final yet. We may still switch to using a little endian encoding.

7 16,777,215 = 2^24 – 1

42

[variable] [Signet]

FIELD TYPES

Signet fields always begin with single octet numeric type identifier, and may provide values using one of three different

layouts. This specification provides the correct layout for all 255 possible type values. The possible layouts are a fixed

length signature field, a variable length value field, which is used by all of the defined fields which don’t provide

signatures, and an undefined field layout designed to provide a variable length name in addition to the variable length

value.

While parsing signets conforming to signet data formats, a parser must ignore any fields with unrecognized type codes. If

an unrecognized field is encountered, it must use the defined field, variable length value layout provided below. With the

exception of the required cryptographic fields identified by this specification, and the image field, all other variable length

value fields must use a 2 octet length parameter. This scheme will allow parsers to ignore unrecognized fields and

continue processing the signet, although a parser may issue a warning message. Future signets specifications which

continue using the magic numbers provided by this specification must ensure backwards compatibility.

Parsers adhering to this specification must be able to identify and validate all of the required cryptographic fields

described in this revision. An implementation must also be able to parse the length all fields. Parsers should be capable of

validating all of the optional field values, but must be ensure fields they properly validate the value of every field whose

value is used.

SIGNATURE FIELDS

Fixed length fields are used to provide cryptographic signatures. When encountering signature field, the single octet type

must always be followed by a 64 octet signature.

[1 octet] [Type]
[64 octets] [Signature Value]

DEFINED FIELDS

Defined fields use a single octet to provide a field type, which is immediately followed by a length parameter that is 1, 2

or 3 octets. The scheme allows defined fields to provide a variable length value. The number of octets used by the length

parameter is determined by field category. Defined cryptographic fields must use a 1 octet length parameter (unless

they are a signature field, in which case they use the fixed length format above). All of the informational fields in the

common and distinct ranges, and the signet identifier field use the defined variable length value layout provided here,

with a 2 octet length parameter. The image field is the only field which provides a 3 octet length parameter.

For defined fields holding a variable length value, the minimum valid length is 0, while the maximum valid length is

determined by the number of octets used by the length parameter. Implementations must be able to handle a value

length of 0, and must treat these fields as being the functional equivalent of omitting the field entirely.

[1 octet] [Type]
[variable] [Length]

 43

[variable] [Value]

UNDEFINED FIELDS

The undefined field layout has been designed for flexibility, allowing implementations to create fields with variable

length names and values. Undefined fields are indicated by the single octet type parameter, which will indicate

undefined fields using the value 251. The type parameter is followed by the length of the name encoded as a single

octet length value. The name value follows the length parameter and must be comprised of valid characters from the

UTF-8 encoding standard. Names must always be at least 1 character in length, and should always begin with a capital

letter. Name values must be constructed without the use of whitespace characters, and may use up to 255 octets. The

name parameter is followed by the value length parameter, which is provided using 2 octets. Implementations must

accept undefined fields with a length value of 0. The maximum length of an undefined field value is 65,535 octets.

Values may include binary data, with octets of any possible 8 bit value, and signet parsing implementations must be

capable of handling binary data in undefined field values.

Implementations should be capable of handling invalid undefined fields where the length of the name is 0, or where the

name value includes invalid UTF-8 sequences or whitespace characters. Implementations responsible for signet creation

must remove these invalid undefined fields, and consumer implementations must never use the value of an undefined

field with an invalid name for any purpose. Implementations may choose whether to provide users with a warning when

invalid name values are encountered.

 [Min] [Max] [Optional]
[Type] [1] [1] []
[Length] [1] [1] []
[Name] [0] [255] []
[Length] [2] [2] []
[Value] [0] [65535] []

CRYPTOGRAPHY

SIGNING KEYS

All public signing keys must begin with the value 64 {0x40}, and then be followed by 32 octets which represent a

Ed25519 public key. [PGP-EdDSA] The public key must be in the compressed little endian format defined by the Ed25519

paper and used by the Ed25519 reference implementation [EdDSA]. A decompressed public key must represent a valid

point on the Twisted Edwards curve:

x2 + y2 = 1 (121665/121666)x2y2

ENCRYPTION KEYS

All encryption key fields must provide an uncompressed public key, which represents a valid point on the secp256k1

curve. Public encryption keys are provided using an uncompressed format, where the two coordinates representing the

point, or P = (x, y), are provided as concatenated big endian integers. Each coordinate must be aligned to an 8 bit

boundary, and prefixed with the a format identifier consisting of a single octet with a value of 4 {0x04} [PGP-ECC]. This

44

may also be expressed as Kpub = 0x04 || x || y, with the value Kpub represents a serialized public key provided with a

signet.

SIGNATURES

When encountering a signature field, it is important to note precisely what data must be used to generate, and then

validate a signature. A given signature must always be taken over every field which precedes it. The fields must be

provided in ascending order, according to their numeric field identifier, and the native binary encoding form. This

description encompasses all of the octets which precede a signature, including field identifiers and length parameters,

with two exceptions: the 5 octets used by the signet object header, and the 1 octet used by a signature’s field identifier.

Note this exception only applies to the current signature field. If a signet includes signatures with lower numeric field

identifiers, they are included in their entirety in the current signature.

All signatures must be created and validated using the EdDSA8 algorithm and the Twisted Edwards curve:

x2 + y2 = 1 (121665/121666)x2y2

This particular Twisted Edwards curve is more commonly known by the colloquial name Ed25519, and is birationally

equivalent to the Montgomery curve colloquially known as Curve255199 [EdDSA]. This signing algorithm generates two

parameters as output, the R and S, which are compressed into 32 octets each, using a little endian encoding scheme

defined in the EdDSA paper and used by the Ed25519 reference implementation. These parameters are expressed as

SIG = (R || S), where SIG represents the 64 octet signature value supplied by the signet signature fields.

SPLITTING

A signet may carry up to 3 organizational signatures. These signatures are provided between each of the field categories,

and are generated using all of the signet fields which precede them. This allows a signet resolver, or Privacy Agent (PA)

to split a signet, and extract a subset of the fields, while a retaining signet object that remains cryptographically

verifiable.

A full signet may be extracted from an identifiable full signet by removing the identity fields. Alternatively a

cryptographic signet is obtainable from a full signet by removing the informational fields.

Signet resolvers may choose to split full signets and only store the cryptographic signet when encountering excessively

large signets. Alternatively, a PA may split stale signets and retain only the cryptographic signets when encountering a

new organizational or user signet.

8 Specifically, the parameters for EdDSA are: b = 256; H is SHA2-512; q is the prime 2255 - 19; the 255 bit encoding of F2255 - 19 is the

usual little endian encoding of { 0, 1, ..., 2255 - 20}; ℓ is the prime 2252 + 27742317777372353535851937790883648493;
d = -121665/121666 ∈ Fq; and B is the unique point (x, 4/5) ∈ E for which x is positive. This collection of parameters is known
colloquially as Ed25519-SHA2-512. [EdDSA]

9 Curve25519 is the Montgomery curve v2 = u3 + 486662u2 + u over the same field. The equivalence is x = √486664u/v and y = (u -
1)/(u + 1) [EdDSA]

 45

Signet resolvers should store at least the cryptographic signet in a user’s Signet Ring to facilitate chain of custody

verifications in the future. Storing the full signet, along with storage of the identity fields is optional.

Key Servers (KS) must ensure they store all of a user’s cryptographic signets between a user’s current root signet and

their current signet. This information is need by the DMTP signet history command (see HIST) and is used by a signet

resolver to validate the chain of custody between a stored user signet, and a current user signet.

FINGERPRINTS

Several different types of signet fingerprints are used by different aspects of the system. All fingerprints are generated

using the SHA2-512 algorithm. A cryptographic fingerprint is used to retrieve a specific signet or verify that a stored

signet is still current. The root and ephemeral fingerprints may be used to manually verify a signet using an alternate

communications channel.

CRYPTOGRAPHIC

A cryptographic fingerprint is used by the DIME protocols and formats to identify a specific signet. This is the type of

fingerprint used by the DIME protocols and supplied in the envelope of an encrypted D/MIME message. Unless otherwise

noted, any reference to a fingerprint will be to a cryptographic fingerprint.

A cryptographic fingerprint is formally defined as a SHA2-512 hash of a cryptographic signet. The fingerprint is taken

over all of the fields which make up a cryptographic signet in their binary encoding form. This includes the signature

fields. Only the 5 octet signet object header must be omitted from a cryptographic fingerprint.

EPHEMERAL

An ephemeral fingerprint may be used by two people in real-time contact, and is generated by concatenating the full

signets for both users, and then generating a SHA2-512 hash over the combination in its native binary form. Only the

signet object header and the identity fields are omitted.

To determine which order the full signets should be combined, an implementation must generate a cryptographic

fingerprint for both users, then order them based on the numeric value of the fingerprint output. This ordering is then

applied to the full signets to calculate the ephemeral fingerprint.

ROOT

A root fingerprint is specific to user signets, and refers to the cryptographic fingerprint of the first signet a user’s chain of

custody. This is the fingerprint that a user may supply to others, and is suitable distribution using a static medium like

paper, or posted on a user’s personal website. A root fingerprint is suitable for asynchronous manual verification because

it will remain unchanged until there is a break in a user’s chain of custody.

An individual may verify the current signet for a user by retrieving root signet for a given email address, confirm the root

fingerprint matches the supplied fingerprint, and then validate the chain of custody between the manually verified root

signet and a user’s current signet.

46

CRYPTOGRAPHIC SIGNETS

A cryptographic signets represents the smallest valid form of signet object, and is a subcomponent of all other signet

forms (full and identifiable). Cryptographic signets are also incredibly small which makes retrievals fast, and storage

efficient. The typical cryptographic organizational signet will be less than 256 octets, while most cryptographic user

signets will be less than 512 octets.10

A cryptographic signet is compromised of the required fields needed to support the end-to-end to encryption of email

messages. This requires providing public signing and encryption keys along with the signatures required to assess their

validity.

ORGANIZATIONAL SIGNETS

The cryptographic fields for an organizational signet occupy the range 1 {0x01} to 4 {0x04} and are used to provide the

relevant encryption and signing keys associated with a domain name.

Field Label Status Multiples Type
1 Primary-Organizational-Key Required No Signing Key
2 Secondary-Organizational-Key Optional Yes Signing Key
3 Encryption-Key Required No Encryption Key
4 Organizational-Signature Required No Signature

PRIMARY ORGANIZATIONAL KEY

Provides the Primary Organizational Key (POK) associated with a domain name, which is a 32 octet compressed Ed25519

public key, prefixed with a 1 octet format identifier. The private key associated with a POK value must also be used to

the organizational signatures signet, and a consumer must independently validate all of the signatures provided by an

organizational signet using the supplied POK value. A consumer must also ensure the POK value supplied by an

organizational signet matches 1 of the POK field values in the management record.

The Primary Organizational Key (POK) is authorized for all organizational signing operations. If an organization chooses to

use their POK for signing user signets and outbound messages, then consumers may validate the signatures using a DNS

query, without retrieving the organizational signet.

When displaying the value of this field, the label “Primary-Organizational-Key” should be used and the key encoded

using base64.

[1 octet] [Type]
[1 octet] [Length]
[1 octet] [Format Identifier]
[32 octets] [Public Key]

10 Organizational signets could include multiple secondary signing keys, and user signets could include alternate encryption keys. This
would increase their size beyond 256, and 512 octets respectively, although the size would likely remain small.

 47

The following is an Ed25519 public key, provided in hexadecimal form:

Qpub: 0x3f098994bdd916ed4053197934e4a87c80733a1280d62f8010992e43ee3b2406

If this same public key was supplied as the POK value by an organizational signet, it would appear as the following

base64 value:

Primary-Organizational-Key: ASFAPwmJlL3ZFu1AUxl5NOSofIBzOhKA1i+AEJkuQ+
47JAY

SECONDARY ORGANIZATIONAL KEY

The Secondary Organizational Key (SOK) field provides an alternative signing key, along with a flags octet to indicate

which potential signing functions the key is authorized to perform. The value holds a single octet flags parameter,

followed by an Ed25519 public key. The SOK field is the only cryptographic field which may be included in the

cryptographic portion of an organizational signet multiple times.

The first octet for this field provides the permissions octet. This octet contains a collection of bit positions, which if

enabled indicate the appropriate operation is authorized. At least one of the first 3 bit positions must be enabled. If any

of the reserved flags have been enabled, the field value must be ignored and any associated signature verification

operations must fail.

[1 octet] [Type]
[1 octet] [Length]
[1 octet] [Permissions]
[1 octet] [Format Identifier]
[32 octets] [Public Key]

The bits in the permissions octet authorize the secondary key to sign the listed data types:

[1] [0x01] [User Signets]
[2] [0x02] [Outbound Messages]
[4] [0x04] [TLS Certificate]
[8] [0x08] [Software]
[16] [0x0F] [Reserved]
[32] [0x20] [Reserved]
[64] [0x40] [Reserved]
[128] [0x80] [Reserved]

The following is an Ed25519 public key, provided in hexadecimal form:

Qpub: 0x3f098994bdd916ed4053197934e4a87c80733a1280d62f8010992e43ee3b2406

When displaying the value of this field, the label “Secondary-Organizational-Key” should be used. If this public key was

supplied as a SOK value in an organizational signet, and the SOK value was authorized to sign user signets and outbound

messages, it would become the following base64 value:

Secondary-Organizational-Key: AiIDQD8JiZS92RbtQFMZeTTkqHyAczoSgNYvgBCZ
LkPuOyQG

48

ENCRYPTION KEY

The encryption key field is used to provide an uncompressed secp256k1 public key. Once an encryption key has been

published as part of an organizational signet, the corresponding private key will be required to access the envelope

information for any D/MIME messages handled by the organization’s mail servers.

The encryption key field provides its public key in an uncompressed format, with the point values that make up the point

P = (x, y), provided as two concatenated big endian numbers, aligned to the 8 bit boundary, and prefixed with the format

identifier 0x04 [PGP-ECC]. The complete public key value is expressed as B = 0x04 || x || y, with the value of B

representing a serialized public key.

The following is a secp256k1 public key, with the values of X and Y provided in hexadecimal form:

X = 0x6df18fcf75f52c09bd7cb0d56d601ff404a8d2fa610f127c21f51e4bea6233d1
Y = 0x362c92d78981499d09b2102fe7f8a227dd551e23aea5ff396235bf14af0749b6

When displaying the value of this field, the label “Encryption-Key” should be used, and the binary data encoded as a

base64 string. If the public key provided above were display, it would appear as:

Encryption-Key: A0EEbfGPz3X1LAm9fLDVbWAf9ASo0vphDxJ8IfUeS+piM9E2LJLX
iYFJnQmyEC/n+KIn3VUeI66l/zliNb8UrwdJtg

ORGANIZATIONAL SIGNATURE

The organizational signature field provides a 64 octet signature, generated using the signet fields 1 through 3, and the

private portion of the POK. This signature allows a full organizational signet to be split, and the cryptographic signet

extracted, while retaining in a form signet form which can still be cryptographically verified.

USER SIGNETS

The first 6 user signet fields make up the cryptographic signet, and provide all of the necessary public keys support the

message encryption functionality provided by DIME. The field definitions are:

Field Label Status Multiples Type
1 Signing-Key Required No Signing Key
2 Encryption-Key Required No Encryption Key
3 Alternate-Encryption-Key Optional No Encryption Key
4 Custody-Signature Required No Signature
5 User-Signature Required No Signature
6 Organizational-Signature Required No Signature

SIGNING KEY

Must provide a valid 32 octet Ed25519 public key in compressed little endian form (see Signing Keys). The corresponding

private key is used to generate a self-signature, which is included in a signet signing request, and becomes the user

signature field (see User Signature). The corresponding private key must also be used to create the chain of custody

 49

signature when the signet is rotated (see Custody), and for generating the full and tree signatures included with

outbound messages. When displaying the value of this field, the label “Signing-Key” should be used and the key

information encoded using base64.

ENCRYPTION KEY

Must provide a valid public key representing a point on the secp256k1 curve and prefixed with the format identifier 4

{0x04} (see Encryption Keys). The corresponding private key will be needed to access messages encrypted to this signet,

as described in the next chapter. When displaying the value of this field, the label “Encryption-Key” should be used and

the key converted into a base64 string.

ALTERNATE ENCRYPTION KEY

Alternate key fields must always begin with two octets, the first provides security level claims for the alternate

encryption key, while the second indicates which alternate encryption cipher suite the key should be used with.

The first octet, which provides an indication of what security level applies to the alternate key. These claims must be

treated as advisory unless the following exception is applicable. This because when a UPA is retrieving a signet from a

foreign source, it has no way of determining, verifiably, whether the claimed security level is accurate. A policy of

requiring accurate security level claims within user signet signing requests is recommended for all Key Service (KS)

implementations.

This revision specifies two alternate ciphersuites. Which suite the provided value should be used with is indicated by the

second octet. Currently the value 1 {0x01} indicates an alternate secp256k1 public key, while a value of 2 {0x02}

indicates a public key on the curve colloquially known as Curve41417 [DANGER]. The values 192 {0xC0} through 239

{0xEF} must be used by non-standard, or experimental ciphersuites. The values 240 {0xF0} through 255 {0x255} must

never be used. A cryptographic signet which supplies an alternate encryption key where the second octet in the

reserved range should be considered invalid, and a warning must be generated, which a user may elect to ignore.

The remaining octets are used to store actual key material, and are dependent upon the indicated ciphersuite. When

displaying the value of this field, the label “Alternate-Encryption-Key” should be used.

SECURITY LEVELS

When a user signet claims a security level for an alternate encryption key, the information must be treated with

skepticism, used carefully, and considered only as an advisory. The exception is when the author and recipient belong to

confined group where the members are trusted to provide accurate security level claims, or they belong to the same

organization and the KS is trusted to ensure a signet provides authentic clearance level claims. For consumers where this

exception does not apply, there is no guarantee a user’s signet is reporting an accurate security level. This policy may

considered useful inside organizations, or confined groups, which handle particularly sensitive materials and want to

allow users to force the specialized handling with enhanced security precautions for specific messages.

50

Security levels, even in an advisory role, may provide guidance to authors, and allow them to make informed decisions

about the sensitivity of any materials sent. A security level octet uses a bit mask to the values. Only most significant

security level should be considered relevant. The currently defined security levels for private keys are:

[0] [0x00] [Unprotected]
[1] [0x01] [Sensitive]
[2] [0x02] [Secret]
[4] [0x04] [Top Secret]
[8] [0x08] [Top Secret // Special Access]
[16] [0x16] [Top Secret // Extremely Compartmented
 Information // Special Access]

The definitions for these security levels is:

 Unprotected. Server side encryption, trustful account mode, requires absolute trust in the service provider.

 Sensitive. Client side encryption, cautious account mode, but thin and thick clients are supported, allowing for

web access.

 Secret. Client side encryption, cautious account mode, thin client support is disabled for content protected by an

alternate encryption key, mandating that a thick client be used to access the attachment and display sections of

a message.

 Top Secret. Client side encryption, cautious account mode, thin client support is disabled, mandating that a thick

client is always used, multiple devices are allowed.

 Top Secret // Special Access. Client side private key storage, paranoid account mode, mandates that a single

thick client is always used.

 Top Secret // Extremely Compartmented Information // Special Access. Hardware security module must be

used for key storage and encryption, paranoid account mode, mandates the use of a singular purpose built

access device.

SPECIAL ACCESS

The remaining bits in a security level octet are used to indicate a private key is used with special access program. The

recommended policy is for implementations to limit the use of special access program claims, and only allow signets with

these bits enabled when an alternative encryption key has a Top Secret // Special Access clearance or higher. We also

recommend that client implementations only consider the special access bits if the appropriate Top Secret // Special

Access has been indicated, and if the signet conforms to the exception detailed above regarding the trustworthiness of

security level claims. The currently defined special access program labels are:

[32] [0x20] [Special Access // Yankee White]
[64] [0x40] [Special Access // Shadow Hunter]
[128] [0x80] [Special Access // Underclass Appelbaum]

CUSTODY

When rotating a user signet, this field must contain a 64 octet Ed25519 signature for the first 3 user signet fields. The

signature must use the previous signing key when generating this signature. If this is the first user signet ever created, or

 51

if the private signing key for the previous signet is unavailable, this field must be omitted. Consumers must reject a

signet if the value supplied by this field is invalid. If the field is missing, or empty, then a signet resolver must issue a

security error if a previous user signet is stored in a user’s signet ring. If a previous user signet is available, and this field

is populated with a signature, then a resolver must independently validate the newly retrieved signet contains a valid

chain of custody signatures linking the stored signet with the current one (see HIST). When displaying the value of this

field, the label “Custody” should be used and the signature information encoded using base64.

USER SIGNATURE

Must provide a 64 octet Ed25519 signature for the binary data stream comprising the first 4 fields in the user signet,

which validates using the public Ed25519 signing key stored in field 1 (Signing-Key). Consumers must reject a signet if

the value supplied by this field is invalid. When displaying the value of this field, the label “User-Signature” should be

used and the signature information encoded using base64.

ORGANIZATIONAL SIGNATURE

Must provide a 64 octet Ed25519 signature for the binary data stream comprising the first 5 fields in the user signet,

which validates against the Ed25519 POK, or an authorized SOK found in the associated organizational signet. Consumers

must reject a signet if the value supplied by this field is invalid. When displaying the value of this field, the label

“Organizational-Signature” should be used and the signature information encoded using base64.

FULL SIGNETS

A full signet includes a cryptographic signet, plus the optional informational fields. Unlike the required cryptographic

fields which are strictly defined, parsers must ignore unrecognized informational field types. Assuming a full signet is

syntactically and structurally valid, a parser should also ignore fields any invalid content, and use only the valid field

values. All informational fields, except for the last 3, use the variable length value field type, with a 2 octet length

parameter.

This also means that any unrecognized informational field types must also use the variable length value field type and

provide a 2 octet length parameter. This scheme guarantees backwards for any signet object which provides a magic

number defined by this specification. Signet parsers must be capable of separating semantics from syntax, which means

they must be capable of parsing out the length of an unrecognized or unsupported informational field and advancing

over its value. This allows future revisions to add informational fields which are semantically ignored.

The informational fields provided with a full signet have been divided into the following ranges (see Categories and
Ranges):

Field Ranges Subcategory
16 – 127 Common Informational Fields

128 – 250 Distinct Informational Fields
251 - 252 Special Informational Fields

253 Full Signet Signature Field

52

COMMON FIELDS

The two signet types (user and organizational signets) include fields that are common between them. Implementations

must not vary the use of these common fields between the user and organizational signet formats. The following table

lists the currently defined common fields:

Field Identifier Label Status Multiples Type
16 Name Optional No Text
17 Address Optional No Text
18 Province Optional No Text
19 Country Optional No Text
20 Postal-Code Optional No Text
21 Phone Optional No Text
22 Language Optional No Text
23 Currency Optional No Text
24 Cryptocurrency Optional No Text
25 Motto Optional No Text
26 Website Optional No Text
32 Message-Size-Limit Optional No Text

The common fields defined above are described below. These descriptions will not be repeated in the class specific,

distinct field sections.

NAME

Should provide a UTF-8 string of characters containing an organization or user’s preferred name, as they want it

presented. If applicable, when displaying this field, the label “Name” should be used.

ADDRESS

Should provide a UTF-8 string of characters corresponding to an organization, or user’s physical address. When displaying

the value of this field, the label “Address” should be used.

PROVINCE

Should provide UTF-8 string of characters corresponding to an organization or user’s province, or the principal

administrative division of the signet owner’s country. This is more commonly called the state, region, territory, district, or

canton depending on the locale. The contents of this field should not be abbreviated. When displaying the value of this

field, the label “Province” should be used, unless the client is sophisticated enough to consider the locale and supply the

appropriate colloquial term.

COUNTRY

 53

Should provide a UTF-8 string of characters corresponding to an organization or user’s country. The contents of this field

should not be abbreviated.11 When displaying the value of this field, the label “Country” should be used.

POSTAL CODE

Should provide a UTF-8 string of characters corresponding to an organization or user’s postal code. The contents of this

field should not be abbreviated. When displaying the value of this field, the label “Postal-Code” should be used.

PHONE

Should provide an organization or user’s phone number, multiple values may be supplied, separated by semicolons. An

optional identifier may appear at the beginning of a value. If an identifier is provided it must be terminated by the colon

{0x3A} symbol. Identifiers must not exceed 16 UTF-8 characters, must not include a colon or semicolon, or a white space

character. Identifiers which violate these rules should be ignored, and may result in the specific phone number, or the

entire field being ignored. If the identifier is invalid, or missing, a default identifier value of “Phone” should be used.

The phone number field parameter may begin with a plus “+” {0x2B} symbol to indicate an international phone number,

and should be followed by a complete the dialing prefix, country code, and phone number. If the phone number does not

begin with a plus “+” {0x2B} symbol, it must be a national number. When providing a national number, a portion of the

leading digits may be enclosed inside parentheses “()” {0x28} and {0x29} to indicate they digits are a trunk prefix and

may only be required when calling from a different trunk code. [E123]

The plus “+” {0x2B} symbol may only be used by a phone parameter once, and must be the first character supplied.

Parentheses “()” {0x28} and {0x29} may only be used when the plus “+” {0x2B} symbol is absent. If the opening

parentheses “(“ {0x28} is used, it must be followed by one or more digits and a closing parentheses “}” {0x29}. The

parentheses “()” {0x28} and {0x29} sequence may only be used once in each phone parameter.

A sample phone field, without an identifier, which supplies a national phone number would appear as:

4108546334

While the same phone number could also appear as:

(410)8546334

If this number was provided with an identifier and a second phone value was also provided with an identifier, it could

appear as:

DIRECT:(410)8546334;OFFICE:2024561414

11 The suggestion has been made to make this a 2 or 3 letter country code and use the ISO 3166-1 alpha-2 or alpha-3 list to determine
the actual country name. This would limit the number of recognized countries and require implementations to translate the country
code into the local language, but would make it possible to programmatically recognize the value. The jury is still out on this.

54

Note the first phone parameter supplies the optional parentheses while the second value does not.

LANGUAGE

Should provide a string of characters containing an organization or user’s preferred language identifier in order of

preference.12 A semicolon terminates the string value and provides an optional separator if multiple values have been

provided. The string which follows the semicolon should be considered a secondary language identifier and used if the

preceding value is unsupported. The sequence may repeat until either the signet owner’s list of preferred languages is

exhausted or the length limit for the field value is reached. When displaying the value of this field, the label “Language”

should be used.

The string values provided by this field should appear in form of a language tag, optionally followed by a subtag, which is

typically used to indicate the specific country or region. The language and subtag values must be separated by a dash.

[LANGUAGE] Convention dictates that language tags should be provided in lowercase form [ISO639-1], script codes in

lowercase form but with the first letter capitalized [ISO15924] while regional and country subtags should be provided

using all uppercase letters. [ISO3166-1]

The value may be used to select a signet owner’s preferred language. The value also provides guidance when formatting

dates, times, numbers and currency amounts. When a consumer encounters multiple language identifiers, it should select

the first fully supported value it encounters. If none of the identifiers are fully supported, a consumer should examine the

list a second time, and discard the subtag when making comparisons, considering only the language identifier. The first

supported language it encounters should be selected. If this field is missing, and a signet has supplied a value for the field

“Country”, then its value may be considered as an alternative.

For user signets where the Language and Country fields are missing, invalid or their values unsupported, a consumer may

fall back to considering the associated organizational signet using the same logic described above. If all of the preceding

logic fails to yield a supported language identifier, then implementations may also consider the organizational domain

and apply the appropriate language preference the domain belongs to a regional or country specific Top-Level-Domain

(TLD). If an implementation is unable to determine the language preference, the default value “en-US” should be used.

Implementations should recognize all 2 character language identifiers established by the ISO 639-1 standard. [ISO639-1]

Support for the more comprehensive 3 character language tags established by ISO 639-2 [ISO639-2], the 4 character

script codes established by ISO 15924 [ISO15924], location subtags is optional.

Language tags should be selected and interpreted using the ISO 639-2 registry maintained by the Library of Congress

(LOC) [LOC-LANG], while location subtags, if supported, should be interpreted using the registry maintained by the

Internet Assigned Numbers Authority (IANA). [IANA-LANG]

The following value would indicate the language is English and the country is the United States of America:

en-US

12 The language field value is sometimes referred to the “locale” by other protocols and standards.

 55

The following, more complicated example, indicates a preference for English, localized for the United States of America,

followed by any available English representation, then any German representation, and finally by any available French

representation.

en-US;en;de;fr

CURRENCY

A sequence of 3 uppercase characters [ISO4217] which correspond to the code used by a signet owner’s preferred form

of currency. A semicolon terminates the value, and serves as an optional separator, allowing for multiple currency codes

to be supplied, based on the signet owner’s order of preference. Currency codes should be in preferential order, with the

most preferred appearing first, and the least preferred appearing last. Only 3 character codes should be used, and they

should be interpreted using the A.1 currency codes table maintained by the Swiss Association for Standardization (SNV).

[SNV-CURRENCY] Values which are not included in the A.1 table, or which include an invalid character should be ignored.

Matching 3 character codes with lower case characters is optional.

If the currency field is missing, or the supplied values are invalid, then the following should be applied as the default

currency preference ordering: “USD;EUR;CHF;GBP;JPY;CAD;AUD;CNY;NZD;RUB;BRL;MXN” which was derived by the major

independent national currencies based on trading volume, the size of the country’s population, along with relative

strength and stability. This default preference ordering may be overridden if the value of the Country signet field is

recognized, and is associated with a national currency.

When displaying the value of this field, the label “Currency” should be used. The following currency field example

indicates a preference for United States Dollars, followed by Swiss Francs, European Euros, and finally Indian Rupees:

USD;CHF;EUR;INR

CRYPTOCURRENCY

A UTF-8 string which should correspond to a signet owner’s preferred cryptographic currency. The 3 character

cryptocurrency identifying type must be separated from the payment address information by a colon. A semicolon

terminates the cryptocurrency string, and provides an optional separator. If a UTF-8 string follows the semicolon, it

should be interpreted as a less preferred cryptocurrency type presented in the same identifier, colon, value form. The

sequence may repeat until the signet owner’s list of preferred cryptocurrencies is exhausted or the length limit for the

field value is reached. If the field value includes an invalid UTF-8 codepoint, the entire field must be ignored, otherwise if

an individually delimited value is provided without an identifier, or if the identifier is invalid/unrecognized, only the

specifically delimited value should be ignored. When displaying the value of this field, the label “Cryptocurrency” should

be used.

Support for this field is optional, but if an implementation does support it, then the following defined cryptocurrency

symbols must be recognized:

Symbol Name Website
BLK Blackcoin https://www.blackcoin.co/

56

Symbol Name Website
BTC Bitcoin https://bitcoin.org/
DRK Darkcoin https://www.darkcoin.io/
LTC Litecoin https://litecoin.org/
PPC Peercoin http://www.peercoin.net/
STR Stellar https://www.stellar.org/
XMR Monero https://monero.cc/
XRP Ripple https://ripple.com/currency/

In the event this field is empty, a consumer should assume the preferred cryptocurrency is Bitcoin. The value of this field

should match the following example:

BTC:19gy9ifMJuHoRbVpXBgtf6NTAT6PiDb8SQ

MOTTO

A UTF-8 string of characters corresponding to a signet owner’s motto or vision statement. When displaying the value of

this field, the label “Motto” should be used. The value should be less than 256 UTF-8 characters. Parsers have the option

of truncating the value at 256 characters. The following is an possible motto value, provide as an example:

For protection from the forces of evil. Use as directed.

WEBSITE

A UTF-8 string of characters corresponding to a signet owner’s website. The value for this field must be a valid Hypertext

Transfer Protocol (HTTP) Universal Resource Locator (URL) or HTTP Secure (HTTPS) URL. If the field does not contain a

valid HTTP or HTTPS value, it must be ignored. The URL should use HTTPS, although this requirement remains optional.

When displaying the value of this field, the label “Website” should be used.

MESSAGE SIZE LIMIT

A number, represented as a string of digits in text form, with values between 0 {0x30} and 9 {0x39}. The string

represents the size limit for incoming messages. When provided by an organizational signet, the value applies to all of

the email addresses associated the signet. This includes the target domain, and depending on the subdomain policy in

the management record, any subdomains that might exist. If the field is provided in a user signet, the size limit only

applies to individual email address associated with the signet.

The minimum legal value is 1 megabyte (aka mebibyte). When organizational and user signets both provide legal values

for this field, then the smaller of the two values takes precedence. If the field contains a character which is not in the

range {0x30} through {0x39}, if the numeric value is less than 1,048,576, or if the value is greater than 4,294,967,295, it

should be ignored. When displaying the value of this field, the label “Message-Size-Limit” should be used.

DISTINCT ORGANIZATIONAL FIELDS

The following table lists the defined fields which apply only to organizational signets.

 57

Field Identifier Label Status Multiples Type
128 Contact-Abuse Recommended No Text
129 Contact-Admin Recommended No Text
130 Contact-Support Recommended No Text
131 Web-Access-Host Recommended No Text
132 Web-Access-Location Recommended No Text
133 Web-Access-Certificate Optional No Text
134 Mail-Access-Host Recommended No Text
135 Mail-Access-Certificate Optional No Text
136 Onion-Access-Host Optional No Text
137 Onion-Access-Certificate Optional No Text
138 Onion-Delivery-Host Optional No Text
139 Onion-Delivery-Certificate Optional No Text
200 Services Optional No Text

CONTACT ABUSE

A UTF-8 string corresponding to the email address for the organization's abuse contact. If this field is omitted the mailbox

name “abuse” is combined with the organizational domain name for the signet to derive an abuse contact. This field

must provide a value, or an organization must capable of receiving complaints using the default address. When

displaying the value of this field, the label “Contact-Abuse” should be used.

CONTACT ADMIN

A UTF-8 string corresponding to the email address for the organization's administrative contact. When displaying the

value of this field, the label “Contact-Admin” should be used.

CONTACT SUPPORT

A UTF-8 string corresponding to the email address for the organization's support contact. When displaying the value of

this field, the label “Contact-Support” should be used.

WEB ACCESS HOST

A UTF-8 string of characters corresponding to the DNS name (not IP address) of the web access hostname which offers

Hyper Text Transfer Protocol Secure (HTTPS) and provides web based access to user email accounts. A semicolon

terminates the hostname string, and provides an optional separator. The UTF-8 string which follows the semicolon should

be considered a second web access hostname. The sequence may repeat until either the list of web access hostnames is

exhausted or the length limit for the field value is reached. The final web access hostname may terminate with a

semicolon, but its inclusion is optional. When displaying the value of this field, the label “Web-Access-Host” should be

used.

WEB ACCESS LOCATION

58

A UTF-8 string of letters or numbers corresponding to a HTTPS resource location for the organizational webmail system.

When displaying the value of this field, the label “Web-Access-Location” should be used.

WEB ACCESS CERTIFICATE

A base64 string which provides the encoded Ed25519 signature for the TLS certificate supplied by the web access host

over HTTPS. A semicolon terminates the TLS certificate signature string, and provides an optional separator. The base64

string which follows the semicolon should be considered a second base64 TLS certificate signature. The sequence may

repeat until either the list of valid TLS certificate signatures is exhausted or the length limit for the field value is reached.

The final base64 TLS certificate signature may terminate with a semicolon, but its inclusion is optional. When displaying

the value of this field, the label “Web-Access-Certificate” should be used.

MAIL ACCESS HOST

A UTF-8 string of characters corresponding to the DNS name (not IP address) of the mail access hostname which offers

connectivity using the Dark Mail Access Protocol (DMAP). A semicolon terminates the hostname string, and provides an

optional separator. The UTF-8 string which follows the semicolon should be considered a second mail access hostname.

The sequence may repeat until either the list of mail access hostnames is exhausted or the length limit for the field value

is reached. The final mail access hostname may terminate with a semicolon, but its inclusion is optional. When displaying

the value of this field, the label “Mail-Access-Host” should be used.

MAIL ACCESS CERTIFICATE

A base64 string which provides the encoded Ed25519 signature for the TLS certificate supplied by the mail access host

for DMAP connections. A semicolon terminates the TLS certificate signature string, and provides an optional separator.

The base64 string which follows the semicolon should be considered a second base64 TLS certificate signature. The

sequence may repeat until either the list of valid TLS certificate signatures is exhausted or the length limit for the field

value is reached. The final base64 TLS certificate signature may terminate with a semicolon, but its inclusion is optional.

When displaying the value of this field, the label “Mail-Access-Certificate” should be used.

ONION ACCESS HOST

A UTF-8 string of characters corresponding to the onion hostname for mail access. A semicolon terminates the hostname

string, and provides an optional separator. The UTF-8 string which follows the semicolon should be considered a second

onion access hostname. The sequence may repeat until either the list of onion access hostnames is exhausted or the

length limit for the field value is reached. The final onion access hostname may terminate with a semicolon, but its

inclusion is optional. When displaying the value of this field, the label “Onion-Access-Host” should be used.

ONION ACCESS CERTIFICATE

A base64 string which provides the encoded Ed25519 signature for the TLS certificate supplied by the onion access host.

A semicolon terminates the TLS certificate signature string, and provides an optional separator. The base64 string which

follows the semicolon should be considered a second base64 TLS certificate signature. The sequence may repeat until

either the list of valid TLS certificate signatures is exhausted or the length limit for the field value is reached. The final

 59

base64 TLS certificate signature may terminate with a semicolon, but its inclusion is optional. When displaying the value

of this field, the label “Onion-Access-Certificate” should be used.

ONION DELIVERY HOST

A UTF-8 string of characters corresponding to the onion hostname for mail delivery and signet lookups using the Dark

Mail Transfer Protocol (DMTP). A semicolon terminates the hostname string, and provides an optional separator. The

UTF-8 string which follows the semicolon should be considered a second onion delivery hostname. The sequence may

repeat until either the list of onion access hostnames is exhausted or the length limit for the field value is reached. The

final onion delivery hostname may terminate with a semicolon, but its inclusion is optional. When displaying the value of

this field, the label “Onion-Delivery-Host” should be used.

ONION DELIVERY CERTIFICATE

A base64 string which provides the encoded Ed25519 signature for the TLS certificate supplied by the onion delivery

host. A semicolon terminates the TLS certificate signature string, and provides an optional separator. The base64 string

which follows the semicolon should be considered a second base64 TLS certificate signature. The sequence may repeat

until either the list of valid TLS certificate signatures is exhausted or the length limit for the field value is reached. The

final base64 TLS certificate signature may terminate with a semicolon, but its inclusion is optional. When displaying the

value of this field, the label “Onion-Delivery-Certificate” should be used.

SERVICES

Provides a semicolon delimited list of domain level services and protocol extensions support by an organization. The

services field is designed to allow the advertisement of alternate communication protocols or extend the mail protocols

beyond what is defined by this specification.

The text field should provide a semicolon, “;” {0x3b}, delimited list of four character values corresponding to recognized

identifiers. The final value may terminate with a semicolon, “;” {0x3b}, but its inclusion is optional. For example, an

organizational domain which supports the Extensible Messaging and Presence Protocol (XMPP) [XMPP] may advertise

this protocol using the services value:

XMPP

The colon, “:” {0x3a} character, may be used to delineate dependent identifiers within a single value. The complete value

string should be unique, although a protocol identifier may be repeated using a different, unique, collection of dependent

identifiers. For example, if an organizational domain supported multi-user chatrooms [XMPP-CHAT], along with end-to-

end for instant messages (using Off-The-Record (OTR) [OTR]), the services field would be:

XMPP;XMPP:OTR;XMPP:XEP0045

Individual identifiers should all be 3 to 6 uppercase letters, although if a value exceeds 7 uppercase characters, the entire

identifier must be compared as a single token. If any of the identifiers included with a value are unrecognized, the entire

value should be ignored. Identifiers may be evaluated by consumers case insensitively.

60

For protocols identifiers, the hostname responsible for providing a service may, optionally, be advertising using a

corresponding service record. To find the service record a resolver should query the organizational domain associated

with a signet using the appropriate identifying prefix, and the “SRV” resource record type [SRV]. The hostname

responsible may also be located using a protocol specific mechanism.

When displaying the value of this field, the label “Services” may be used. A may display the identifiers, or choose to

parse the values and display the recognized identifiers using their full names.

DISTINCT USER FIELDS

The following table lists the defined user signet fields:

Field Identifier Label Status Multiples Type
128 Title Optional No Text
129 Gender Optional No Text
130 Alma-Mater Optional No Text
131 Alternate-Address Optional No Text
132 Affiliation Optional No Text
133 Supervisor Experimental No Text
134 Political-Party Experimental No Text
135 Resume Experimental No Text
136 Endorsements Experimental No Text
200 Extensions Optional No Text
201 Codecs Optional No Text

TITLE

A UTF-8 string of characters corresponding to a user's job title. A semicolon terminates the 'title' string, and provides an

optional separator. The UTF-8 string which follows the semicolon should be considered the 'title' label. Signet creators

may omit the 'title' label. When displaying 'title', the label must be displayed, if present, otherwise an implementation

may choose to omit the label, or display the default label value. For 'title' fields without a label the string “Title” should

be used as the default value.

GENDER

A UTF-8 string of letters corresponding to a user's gender. A semicolon terminates the 'gender' string, and provides an

optional separator. The UTF-8 string which follows the semicolon should be considered the 'gender' label. Signet creators

may omit the 'gender' label. When displaying 'gender', the label must be displayed, if present, otherwise an

implementation may choose to omit the label, or display the default label value. For 'gender' fields without a label the

string “Gender” should be used as the implied default value.

ALMA MATER

A UTF-8 string of characters corresponding to a user's alma mater. A semicolon terminates the 'alma mater' string, and

provides an optional separator. The UTF-8 string which follows the semicolon should be considered the 'alma mater'

 61

label. Signet creators may omit the 'alma mater' label. When displaying 'alma mater', the label must be displayed, if

present, otherwise an implementation may choose to omit the label, or display the default label value. For 'alma mater'

fields without a label the string “Alma Mater” should be used as the implied default value.

ALTERNATE ADDRESS

A UTF-8 string of valid characters and '@' corresponding to a user's alternate email address. A semicolon terminates an

individual alternate email value, and serves as an optional separator. An additional alternate email address may be

supplied following the semicolon, and the pattern may repeat until all of a user’s alternate email addresses have been

listed or the length limit for the field value is reached. When displaying the value of this field, the label “Alternate-

Address” should be used.

AFFILIATION

A UTF-8 string of characters corresponding to a user's organizational affiliation name. A semicolon terminates the

“affiliation” string, and provides an optional separator. The UTF-8 string value should correspond to the name of the

company, organization, or group the user is affiliated with. When displaying affiliation, the value should appear alongside

the label “Affiliation.”

This field is considered experimental and may be altered dramatically, or removed entirely in the future.

SUPERVISOR

A UTF-8 string of characters corresponding to a user's supervisor name. It can be used as a contact when a user is out of

the office. A semicolon terminates the 'supervisor' string, and provides an optional separator. The UTF-8 string which

follows the semicolon should be considered the 'supervisor' label. Signet creators may omit the 'supervisor' label. When

displaying 'supervisor', the label must be displayed, if present, otherwise an implementation may choose to omit the

label, or display the default label value. For 'supervisor' fields without a label the string “Supervisor” should be used as

the implied default value.

This field is considered experimental and may be altered dramatically, or removed entirely in the future.

POLITICAL PARTY

A UTF-8 string of characters corresponding to a user's political party affiliation. A semicolon terminates the 'political

party' string, and provides an optional separator. The UTF-8 string which follows the semicolon should be considered the

'political party' label. Signet creators may omit the 'political party' label. When displaying 'political party', the label must

be displayed, if present, otherwise an implementation may choose to omit the label, or display the default label value.

For 'political party' fields without a label the string “Political Party” should be used as the implied default value.

This field is considered experimental and may be altered dramatically, or removed entirely in the future.

RESUME

A UTF-8 string of characters corresponding to a user's resume. A semicolon terminates the 'resume' string, and provides

an optional separator. The UTF-8 string which follows the semicolon should be considered the 'resume' label. Signet

62

creators may omit the 'resume' label. When displaying 'resume', the label must be displayed, if present, otherwise an

implementation may choose to omit the label, or display the default label value. For 'resume' fields without a label the

string “Resume” should be used as the implied default value.

This field is considered experimental and may be altered dramatically, or removed entirely in the future.

ENDORSEMENTS

A binary string corresponding to any endorsements a user may have. Endorsements may be used to build a level of trust

or confidence that a user is of good character. Endorsements generated by users on different service providers may

provide a measure of confidence that a signet is valid when it is retrieved for the first time. The value must begin with a

valid DIME-enabled email address for a signer. The address parameter is by a colon, and is followed by the cryptographic

fingerprint, expressed using modified base64, for the signet in a signer’s chain of custody containing the appropriate

public key needed to validate a signature. The fingerprint parameter is terminated by a colon and followed by a 64 octet

Ed25519 signature generated over the signet owner’s root signet and supplied in modified base64 form. An individual

endorsement value is terminated by a semicolon, and may be followed by additional endorsements in the same

“identifier:fingerprint:signature” format.

Any endorsements created by with a signing key that is no longer part of the signer’s chain of custody must ignored. Any

signatures which don’t validate using a signet owner’s current root signet must also be ignored. Invalid endorsements

should be removed the next time the signet is rotated. When displaying the value of this field, the label “Endorsements”

should be used.

This field is considered experimental and may be altered dramatically, or removed entirely in the future.

EXTENSIONS

Provides a semicolon delimited list of optional protocol extensions support by a user’s client. Protocol extensions are

designed to allow extensibility of the underlying protocols and applications. The final extension may terminate with a

semicolon, but its inclusion is optional. The list of extensions should not contain any repeat values, and the values

supplied should use uppercase letters. Consumers must evaluate the list of extensions case insensitively. When

displaying the value of this field, the label “Extensions” should be used.

CODECS

Provides a semicolon delimited list of optional media codecs supported by a user’s client. The final media codec identifier

may terminate with a semicolon, but its inclusion is optional. The list of media codec identifiers should not contain any

repeat values, and the values supplied should use uppercase letters. Consumers must evaluate the list of codecs case

insensitively. When displaying the value of this field, the label “Supported-Codecs” should be used.

SPECIAL FIELDS

The defined special informational fields are:

Field Identifier Label Status Multiples Type

 63

251 Image Optional No Text
252 Undefined Optional Yes Undefined

IMAGE

A binary string corresponding to a user’s or organization's image. This could be used to store a photograph of a user or a

logo for an organization. If a user signet lacks an image, the MUA should display the image provided by the

organizational signet. If both the user and organizational signets lack a valid image, then an MUA should use a default

image depicting a silhouette.

Because the maximum value of the length parameter is 16,777,215, it is critically important that signet creators ensure

the image field does not overflow the 16,777,215 limitation for an entire signet object, dictated by the 3 octet length

parameter in the object header. Consumers must ensure the cumulative length of all fields is less than the 16,777,215

maximum to avoid overflowing the length parameter in the object header. Any signet which appears to exceed this

maximum must be rejected, and the user must notified. An overflowing signet length is likely a malicious attempt to

compromise a parser implementation.

Valid images must be in the Portable Network Graphics (PNG) format [PNG], invalid PNG images should be ignored, along

with any image that uses a different format. Image should have a matching width and height, giving them an aspect ratio

of 1. The recommended dimensions for images are: 512x512, 1024x1024 and 2048x2048. Implementations should

restrict images to 1 megabyte (aka mebibyte). Consumers should be capable of handling signets with images up to 16

megabytes (aka mebibyte), but may ignore image fields larger than 1 megabyte (aka mebibyte). Consumers should

dynamically resize and, if necessary, crop images to dimensions matching the area available to display it.

UNDEFINED FIELDS

Undefined fields allow a specific implementation to defined additional fields at the user or organizational level that are

not already defined in this specification. Undefined fields must be comprised of valid characters from the UTF-8 encoding

standard and provide an arbitrary name and data value that may be recognized by DIME protocol extensions, or simply to

carry arbitrary data for experimentation or use by non-DIME functionality. For additional detail, refer to the section above

entitled Undefined Field Layout.

SIGNATURE FIELD

A full signet includes a second organizational signature following the informational fields. The presence of a full signet

signature in field 253 serves as the technical differentiator between a cryptographic signet and a full signet. It is

technologically possible to have a full signet, with a second organizational signature, even when none of the optional

informational fields provide values.

A full signet signature is an Ed25519 signature taken over the fields 1 through 252 in binary form, and is a required

element of any signet with a value included for an informational field. If a parser encounters a signet with a value for an

informational field, and no full signet signature, it must ignore all of the informational fields, and should generate a

warning.

64

Organizational signets must provide a full signet signature which authenticates against the POK provided in field 1

(Primary-Organizational-Key), while a user signet must provide a signature which authenticates against the POK or an

authorized SOK supplied by associated organizational signet. For user signets, the signing key must be the same as the

signing key used to generate the first the first organizational signature. For more information, see the description of

Organizational Signatures in the section on Cryptographic Signets.

A parser must also ignore all of the informational field values if a full signet signature is invalid. When displaying the

value of this field, the label “Full-Signet-Signature” should be used with the signature value encoded using base64.

IDENTIFIABLE SIGNETS

The following table lists the fields appended to a signet, that when present, make it “identifiable.” These fields are

common to both signet classes, and both signet types:

Type Label Status Multiples Type
254 Identifier Required No Variable
255 Identifiable-Signet-Signature Required No Fixed

IDENTIFIER

For organizational signets, this field provides the domain name associated with a signet. This should be the domain name

used to retrieve the management record which authenticated a signet. The “_dime” prefix used when requesting a

management record as a “TXT” resource record must be omitted. For example, the domain “example.com” would supply:

example.com

For user signets, the field provides the complete email address associated with the signet. The value must be UTF-8,

using the Normalization Form for Canonical Composition (aka NFC). Signet resolvers may encounter hosts which accept

the normalized identifier without finding a match, but based on localized matching rules suggest alternate

representations. Resolvers must exercise caution when accepting these aliases to avoid substitution attacks. If a user

enters “User@Example.TLD” then the identifier must be converted into “user@example.com” and result in a request for

the identifier field:

user@example.com

A resolver must ensure the signet it retrieves provides this exact identifier. When displaying the value of this field, the

label “Signet-Identifier” should be used.

IDENTIFIABLE SIGNET SIGNATURE

Organizational and user signets must contain an Ed25519 signature in field 255, which is generated over the fields 1

through 254 in binary form.

Organizational signets must provide an identifiable signet signature which authenticates against the POK provided in field

1 (Primary-Organizational-Key), while a user signet must provide a signature which authenticates against the POK or an

 65

authorized SOK supplied by an associated organizational signet. For user signets, the signing key must be the same as

the signing key used to generate the first the first organizational signature. For more information, see the description of

Organizational Signatures in the section on Cryptographic Signets.

When displaying the value of this field, the label “Identifiable-Signet-Signature” should be used with the signature value

encoded using base64.

DERIVATIVE FORMATS

SIGNET SIGNING REQUESTS

TBD

ORGANIZATIONAL PRIVATE KEYS

PRIMARY ORGANIZATIONAL KEY

SECONDARY ORGANIZATIONAL KEY

USER PRIVATE KEYS

ALTERNATE USER PRIVATE KEY

ENCRYPTED PRIVATE KEYS

Salting, iterating and encrypting schemes when stored on a server.

USAGE

ROTATION

TBD

REVOCATION

Compromised organizational signets revoked by removing the POK from the management record, and then resigning any

objects which relied on a compromised private key.

Compromised user signets are revoked by including an Estoppel entry in a user signet’s chain of custody, as returned by

the history command.

VALIDATION

A signet is only considered valid if there is a primary lookup source and a secondary pre-authenticated source of

confirmation.

66

The default method for achieving this with an organizational signet is a DMTP retrieval of the full signet, whose signature

is cryptographically verified using the POK found in a management record signed using DNSSEC. Without DNSSEC, a

tertiary source of confirmation is required. This additional confirmation means the TLS certificate supplied by the DMTP

server must be signed by a recognized Certificate Authority.

The default method for achieving this with a user signet, the first time it is requested, is a DMTP retrieval of the full user

signet, and then cryptographically verifying the signatures against the organizational signing keys. Subsequent retrievals

must also provide a valid custody signature, which links the freshly retrieved signet to the previously retrieved signet.

Future plans call for the creation of a global ledger which will act as a non-reputable reflective record for user signets.

Signet resolvers must ensure the organizational signet they retrieve for a domain name is signed using a POK value

found in the management record. While it is possible for a domain to provide multiple POK values in a single

management record, a signet resolver must ensure all of the signatures provided by a signet were created using the

same private signing key, and that all of the signatures are valid.

When attempting to validate organizational signatures for user signets, and messages, a consumer may rely on the

management record POK value instead of retrieving an organizational signet.

ENCODING

Three possible encoding formats are defined by this specification. A parser implementation which converts between the

different encoding formats must ensure that when converted objects into an armored format, they can be converted

back into their original binary representation, or the signatures will be invalidated.

BINARY

JAVASCRIPT OBJECT NOTATION

PRIVACY ENHANCED MESSAGE

The encoding scheme for user and organizational signets is Radix-64 also known as ASCII armor. [PGP]

See the transfer encoding section in the D/MIME chapter for a template of the intro text.

How are cryptographic user signets versus full user signets described? Should org primary/secondary keys get a unique

label? The same question must be asked of user private keys and alternate user private keys. When should info be

embedded in a header field, versus being worthy of a new label? I’m assuming, but it might not be true, that each label

corresponds to its own magic number. What about encrypted private keys? Should they be easy to identify over

unencrypted? Just as a comparison:

 67

-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
DEK-Info: AES-256-CBC,9DA7F400614C9321FE676C366A2FF18F
...snip...

So for a user signet this could be:

-----BEGIN USER PRIVATE KEYS-----
Type: ENCRYPTED
Cipher: AES-256-CBC
Parameters: 9DA7F400614C9321FE676C366A2FF18F <-- holds salt, and
iteration number of kdf iteration rounds
...snip...

------BEGIN ORGANIZATIONAL SIGNET-----
organizational signet
------END ORGANIZATIONAL SIGNET-----

------BEGIN ORGANIZATIONAL PRIVATE KEYS-----
organizational private keys
------END ORGANIZATIONAL PRIVATE KEYS-----

------BEGIN PRIMARY ORGANIZATIONAL KEY-----
Primary organizational key
------END PRIMARY ORGANIZATIONAL KEY-----

------BEGIN SECONDARY ORGANIZATIONAL KEY-----
Primary organizational key
------END SECONDARY ORGANIZATIONAL KEY-----

------BEGIN USER SIGNET-----
user signet
------END USER SIGNET-----

-----BEGIN USER SIGNET REQUEST-----
User signet signing request
-----END USER SIGNET REQUEST -----

------BEGIN USER PRIVATE KEYS-----
user private keys
------END USER PRIVATE KEYS-----

------BEGIN ALTERNATE USER PRIVATE KEY-----
alternate user private key
------END ALTERNATE USER PRIVATE KEY-----

68

PART 6: MESSAGE DATA FORMAT (D/MIME)

This chapter describes the Dark Multipurpose Internet Mail Extensions (D/MIME) data format. The D/MIME format is an

encryption scheme intended to protect Multimedia Internet Mail Extensions (MIME) [MIME] formatted messages. Like

similar formats, D/MIME relies on cryptographic algorithms to ensure message confidentiality, author authenticity and

non-repudiation. Unlike similar formats, D/MIME also encrypts message headers and envelope information, which makes

it a fully encrypted message format. D/MIME messages are designed to minimize the leakage of metadata while being

handled by transferred and ultimately delivered within a Dark Internet Mail Environment (DIME).

INTRODUCTION

The D/MIME format was created with the goal of protecting routing and delivery information, along with the historical

objective of protecting message content and file attachments. With the D/MIME format, the sending and receiving

service providers only have access to the minimum amount of information they need to fulfill their designated roles. The

sending (origin) host will only know the domain of the recipient while a receiving (destination) host will only know the

domain portion of return-path (origin), not the sender (author).

To facilitate the efficient access of D/MIME messages, the format has been structured into distinct sections, which are

further subdivided into chunks. Each chunk is protected by its own unique ephemeral symmetric key. This will allow

devices with resource constraints (like bandwidth, processing power, or storage space) to decrypt and validate portions

of a message independently without compromising security. This allows a client to avoid downloading, decrypting, and

validating an entire message before accessing its contents. The chunks have been optimized for the most commonly

observed access and usage patterns. One of the primary goals for DIME was to ensure users could continue using

Internet electronic mail (email) in a manner that was similar to how they have traditionally behaved. This meant being

able to access encrypted messages efficiently using a variety of different platforms and devices.

Specific cryptographic primitives have been chosen based on security, context, and reputation. The D/MIME algorithms

are believed to be secure for the usages described in this chapter. To ensure a common baseline, and to facilitate

interoperability between DIME implementations, only one algorithm in each category is mandatory. Extensions are

available which allow the use of alternative algorithms and strategies to be layered on top of the encryption schemes

described below. The primitives selected are Elliptical Curve Encryption (ECC) [ECDH] for asymmetric operations (using

curve secp256k1) [SEC], the Advanced Encryption Standard (AES) [AES] for symmetric encryption, the Secure Hash

Algorithm (SHA2-512) for hash operations, and the Edwards-curve Digital Signature Algorithm (EdDSA) for cryptographic

signing operations (using curve Ed25519). Users may also advertise alternative public encryption keys using the curve

colloquially known as Curve41417 [DANGER].

HISTORICAL CONTEXT

The D/MIME message format draws its inspiration from the OpenPGP [PGP] and Secure Multipurpose Internet Mail

Extensions (S/MIME) [SMIME] formats. Without the research and development efforts invested in the development of

those standards, DIME would not be possible. The changes described in this document draw upon the experiences and

the lessons learned by community while implementing, deploying, and communicating with messages protected by

 69

OpenPGP and S/MIME. Readers already familiar with those standards will find this specification easier and more

accessible.

The primary difference between D/MIME and OpenPGP or S/MIME is that it is a fully encrypted message format. D/MIME

protects the envelope and headers of a message, in addition to its contents. Historically, the return path and recipient

address associated with a message have been called the envelope. In the past, the message envelope was transferred at

the protocol level, exposing it to collection by compromised handling agents. D/MIME encrypts envelope information

within the message object, and relies on DIME capable systems to extract and process it. Encryption is used to ensure an

agent only has the information necessary to relay a message to its next hop. This minimizes the amount of information

exposed to the minimum amount necessary for a mail system to function.

D/MIME employs a simple tree like binary structure, with each leaf encrypted separately. This allows a system to access

portions of a message without compromising the remainder. It also allows resource constrained clients to validate

cryptographic signatures, and access pieces without having to download a message in its entirety. Also noteworthy is

that the most commonly needed message headers have been separately encrypted, allowing them to be downloaded

separately and displayed during list operations more efficiently.

Domain Keys Identified Mail (DKIM) [DKIM] is technological parent of another aspect of DIME. To improve security, and

restrict its abuse, DIME systems require that D/MIME messages be signed by the author and then signed again by the

organizational domain. Authors are required to generate a tree signature in addition to a full signature. Cleartext MIME

content is also signed by the author. The organizational domain must also sign the full contents of a message, and may

generate a bounce signature which allows it to verify the origin of a partial bounce.

The final aspect of D/MIME messages which is distinct from OpenPGP and S/MIME is that each message must be

encrypted separately for each recipient. This ensures handling agents can’t determine how many recipients a message is

being sent to, and if the cleartext contents are encrypted using distinct symmetric keys, it will ensure each copy of a

message is uniquely distinct.13

LEAKAGE

Does not mask metadata for two people on the same mail system

The structure of a message is still accessible, and must remain so for efficient access by resource constrained MUAs,

which would allow attackers to fingerprint and then track messages if they could compromise the handling agents, or

compromise the TLS connections used during transfer operations

ALGORITHMS

13 This is an aspect of D/MIME that would benefit from community feedback. The current plan is to allow a message which uses the
same symmetric keys to be submitted once using DMAP, plus the individual key slot and signature values for each recipient. The
submission server would assemble the pieces, and then the full contents would be transferred separately between servers over
DMTP. Users who want to avoid fingerprinting of the contents would need to submit a separate copy for each recipient.

70

Note the following is always the first layer of encryption applied. Its implementation is required. This wording might need

to be tweaked for flow, now that the alternate section has been added and required versus alternates subsections have

been added.

NOTE!!! We have not defined what KDF standard will be applied to the output of the DH to derive the 48 bytes needed

for the KEK! Should we use a variation of PBKDF#2 with SHA-512 and some defined standards? Should we use bcrypt or

scrypt instead? Research is needed! Leaning towards using scrypt!

Required Baseline

The D/MIME message format relies on 3 cryptographic algorithms for key agreement, encryption and signatures. The

Elliptical Curve Diffie-Hellman (ECDH) [ECDH] key agreement protocol is used to calculate a shared secret. Encrypted

payloads and keyslots are encrypted using the Advanced Encryption Standard (AES) [AES]. Both encrypted and cleartext

data is verified using the Edwards-curve Digital Signature Algorithm (EdDSA) [EDDSA].

The AES key used to protect individual key slots is called the Key Encryption Key (KEK), and is calculated using ECDH and

the secp256k1 elliptical curve. Each KEK is generated using an ephemeral message key and the public encryption key

stored in the signet of each actor associated with a message (author, origin, destination and recipient). Keyslots are

protected using a 256-bit KEK and encrypted using AES and the cipher-block chaining (CBC) mode of operation. Keyslots

hold randomly generated 256-bit AES keys along with the randomly generated Initialization Vector (IV) needed to access

encrypted payloads. The encrypted message data and the cleartext data for every encrypted chunk payload are signed

using the EdDSA algorithm. Signatures are generated using the Twisted Edwards curve: x2 + y2 = 1 (121665/121666)x2y2

(collectively called Ed25519) which is birationally equivalent to Curve25519.

ALTERNATE BASELINES

We obviously need to settle what the auxiliary cryptographic baseline is. At the moment it is using a Curve41417

[DANGER] public key to perform another ECDH which generates a shared secret, that is then supplied to the KDF (SKEIN

or SHA3) which decrypts the aux keyslot. Aux keyslot and symmetric data segment would use ChaCha20 (or possibly

Serpent). Signatures would use EdDSA but using the SKEIN or SHA3 message hash function.

TYPES

Magic Number Label

 Message

 Sent Message

 Draft Message

 Naked Message

 Bounce Message

 Forwarded Message

 Abuse Complaint

 Binary Object

 Protocol Ticket

 71

MESSAGES

The following diagram is designed to illustrate how a typical Internet electronic mail message (email) [IMF] message is

split into D/MIME chunks (note the different user and organizational signature chunks have been combined for brevity):

72

Figure 9 - Message Structure

 73

DATA FORMAT

D/MIME messages are comprised of a message header, and an arbitrary number of individual chunks. Chunks are

comprised of a chunk header, a payload and, for encrypted chunks, the appropriate number of keyslots. Every encrypted

payload is protected using a distinct, randomly generated key. The randomly generated keys are stored inside the

keyslots. Keyslots are protected using a distinct shared secret which is unique for each message, and distinct for each

actor authorized to access a message. The number of keyslots is determined by which actors must have access to the

preceding payload.

MESSAGE HEADER

D/MIME messages begin with a 6 octet header. Like all of the binary formats used throughout DIME, a D/MIME message

begins with 2 octets which provide the magic number. The following 4 octets contain the size of a message in its binary

form. The size value does not include the 6 octet header, but does include all of the data that follows it. Because the size

is 4 octets, the binary portion of a message has a technical limitation of 4,294,967,296 octets.

A D/MIME message will always begin with the two octet numeric identifier 1847. Future versions of this specification

which are syntactically compatible will continue to employ this same magic number. If a parser conforming to this

specification encounters any other value besides 1847, it must reject the message and notify the user.

[2 octet] [Magic Number (1847)]
[4 octets] [Message Size]
[variable] [Message]

CHUNKS

Perhaps we should rearrange the next few sections, so they are all sub sections of chunks. Then we’d have: header

(type, length), payloads and keyslots. The payload section would be further subdivided into cleartext, encrypted and

signing. Just a thought.

Messages are broken up into a series of “chunks.” Chunks are broken up into three distinct sections: the header, the

payload and the keyslots. A chunk header is 4 octets in length, with the first octet used to store the type code for a

chunk, and the remaining 3 octets used to store the payload length. Because the length value is 3 octets, and AES

requires that a payload be divided into 16 octet blocks, the maximum size for a payload is 16,777,200 octets. Following

the length is the actual payload data, which is then followed by a variable number of 64 octet keyslots.

Envelope, metadata and signature chunks must appear using an increasing numerical order. Content chunks must appear

after the metadata chunks and before any signature chunks. Only content chunk types may be used more than once.

Message content is subdivided into display and attachment sections. Display chunks may appear in any order inside their

section, but must appear before attachment chunks. Attachment chunks may also appear in any order provided they

follow the display chunks and appear before the signature chunks. See the structure section below for a description of

how messages are divided into chunks.

[1 octet] [Type]

74

[3 octets] [Payload Length]
[variable] [Payload]
[variable] [Keyslots] [Optional]

SPECIALIZED PAYLOADS

Specialized payloads are structured differently from other payload types. Since these payloads are only used to store

unencrypted data, they will never be followed by keyslots. Currently the tracing and ephemeral chunks use this format.

The tracing chunk follows the form:

[variable] [Tracing Information Data]

The ephemeral chunk contains the ephemeral public key for a message. The ephemeral public key is combined with the

recipient’s private key, using the ECDH algorithm, and the result is shared secret which can used to derive the KEK. The

KEK can then be used to decrypt keyslots associated with encrypted chunks, where it will find the symmetric encryption

key and initialization vector to decrypt the encrypted chunk data. Ephemeral chunks are unencrypted, and contain a

compressed secp256k1 public key in binary form. They follow the layout:

[variable] [Ephemerally Generated Message Key]

ENCRYPTED PAYLOADS

Encrypted payloads comprise most of the chunk types. They all use the same basic structure: signature, length, flags,

pad, data segment and padding:

[64 octets] [Ed25519 Signature]
[3 octets] [Data Segment Length]
[1 octet] [Flags]
[1 octet] [Padding Length]
[variable] [Data Segment]
[variable] [Padding]

The entire payload must be encrypted with AES in CBC mode, using a randomly generated 256 bit key and a randomly

generated 16 octet IV. Because AES in CBC uses a 16 octet block size, the overall payload length must be padded to a 16

octet boundary. There are a fixed 69 octets. Because the overall length of a payload is limited by the length field in the

chunk header, the maximum size for a single data segment is 16,777,131 octets. Additional padding is optional, but

should be added to data segments smaller than 187 octets, making the recommended minimum payload 256 octets in

length. An additional random amount of padding should also be added to mask the structural fingerprint for a message.

Data segments larger than 16,777,131 octets must be split across chunks and reassembled by the parser.

The Ed25519 signature is used to validate the decrypted chunk data, and is taken over all of the octets that follow the

signature inside a payload: the length, flags, padding length, data segment, and padding. The signature must be validated

by the parser to ensure the data payload has not been modified. If a data segment is split across multiple chunks, each

chunk will contain its own signature over just the data segment portion contained in that chunk.

 75

The 3 octet data segment length is based on the amount of user generated data carried by a chunk. The value must

never be 0; if a parser encounters a data segment length of 0, the entire message must be rejected. In theory any data

segment could be arbitrarily padded and split across multiple chunks to disguise the nature, structure and amount of data

carried by a message. However, a parser must never split a data segment across more than 4 chunks unless it is larger

than the maximum usable size for 4 consecutive chunks, or 67,108,524 octets.

The next paragraph was moved up. Validating used to appear after the flags and padding discussions. The text may need

to be tweaked as a result.

While parsing an encrypted payload, a parser should treat any violation of this specification identically. Specifically, data

length overflows, an invalid padding lengths, a non-aligned payload, a cleartext signature failure, a padding octet whose

value does not match the padding length octet, a reserved flag bit with a non-zero value, a compression flag bit that is

enabled despite the data segment having uncompressed or corrupted data, or when chunks are split across more than 4

payloads unnecessarily; all of must be treated as data corruption. For spanning chunks, if any of the payloads is

considered corrupt, all of the associated chunks must also be considered corrupt and discarded. The decision whether to

reject a message when a single chunk is corrupt has been left undefined intentionally.

FLAGS

The 1 octet flags is a bitmask used to indicate the different properties described below. Currently 4 of the bits have been

assigned, with the remaining bits reserved for future use. If a parser encounters a bit that has been enabled, which it

does not recognize, the parser must reject the chunk entirely. Currently, the following bit positions have been assigned:

[1] [Alternate Padding Algorithm Enabled]
[2] [Alternate Encryption Algorithm Enabled]
[4] [Compression Enabled]
[8] [Reserved]
[16] [Reserved]
[32] [Reserved]
[64] [Reserved]
[128] [Data Segment Continuation Enabled]

If the alternate encryption bit is enabled, then the cleartext data segment represents the data that must also be

decrypted using the alternative user private key. See alternate encryption below for details.

If the GZIP [GZIP] compression bit is enabled, then the cleartext data segment has been compressed using GZIP. Parser

implementations must implement GZIP and be capable of accessing compressed data segments. D/MIME message

creation implementations should pick one of three suggested compression strategies:

 Compression is Always Enabled
 Compression is Enabled if, and only if, it Reduces the Data Segment Length (Recommended)
 Compression is Never Enabled

If the spanning bit has been enabled, then the data segment continues into the next chunk. The chunk containing the

final piece of a data segment must have the spanning flag disabled. Continuation chunks must use an identical type code

as the chunk they are continuing and appear immediately after the chunk with the spanning flag enabled.

76

PADDING

By default the padding is determined by the single octet that follows the flags field. Any octets appended to the data

segment must be set to the value of the padding octet. Parser implementations must reject chunks where the value of

the padding octets does not match the value of the padding length octet. When the first bit in the flags octet is set to 0,

the data segment length plus the padding length must align to a 16 octet boundary. In addition to the octets needed for

alignment, up to 240 additional octets (in 16 octet blocks) may be added as padding. If padding is appended to the data

segment, beyond what is needed for alignment, the amount of additional padding must be randomized. Including a

random amount of padding is optional, but would ensure two identical messages will have different structural

fingerprints, and further assist in disguising the length of the message contents. The algebraic definition is:

(Header Length (69) + Data Length (Var) + Padding Length (Var) = Chunk
Length) % 16 == 0

If the alternative padding algorithm is enabled, the padding octet must be interpreted as the number of additional 16

octet blocks appended to a data segment, allowing up to 4,080 octets of stuffing, beyond the padding octets needed

strictly for alignment. When the alternative padding algorithm is enabled, the amount of padding included for alignment

must be calculated automatically. This will append between 0 and 15 padding octets to the data segment. Like the

default padding algorithm described above, all padding octets must be set to the value of the padding length octet. The

algebraic definition for the alternative padding algorithm is:

Padding Length * 16 = Stuffing Length
(Header (69) + Data Length (Var)) % 16 = Padding Length

(Header Length (69) + Data Length (Var) + Padding Length (Var) +
Stuffing Length (Var) = Chunk Length) % 16 == 0

ALTERNATE ENCRYPTION

Alternate encryption baselines are applied, or chained onto the required cryptographic baseline. The layout below is used

to describe the data segment defined above. The symmetrically encrypted data, when decrypted, will reveal a second

encrypted payload identical to the one defined above. Signature and other validation rules still apply.

[1 octet] [identifier]
[1 octet] [ephemeral key length]
[variable] [epehmeral public key using alternate algo]
[3 octets] [symmetric data length]
[variable] [symmetrically encrypted
[1 octet] [alternate key slot length]
[3 octets] [alternate symmetric key data]

Make sure you emphasize the issues with nesting! We need limits on it! And make sure you emphasize the importance

length checking, to prevent overflows!

 77

SIGNATURE PAYLOADS

Signature payloads also use a specialized format. Signature chunks are encrypted, so they are followed by keyslots. But

the decrypted data does not conform to the encrypted payload scheme described above. The decrypted payload for a

signature chunk is a 64 octet Ed25519 signature value stored in binary form.14

[64 octets] [Ed25519 Signature]
[variable] [Keyslots]

KEYSLOTS

Every keyslot must be 64 octets in length. Keyslots are encrypted using the KEK for each actor. The number of keyslots is

determined by the chunk type. Every encrypted chunk must have a keyslot for the author and recipient. Envelope chunks

and signature chunks have additional keyslots for the origin and destination domains. See the individual chunk

descriptions below for additional details on who can access the different types of chunks.

Every encrypted chunk is protected using a 16 octet IV and a 32 octet (256-bit) AES key which must be randomly

generated and unique for each chunk. The IV and each keyslot consists of three fields: random data (16 octets), the IV

XORed with the random data (16 octets), and the AES key (32 octets) collectively making up the 64 octets occupied by

each keyslot.

The first 32 octets of data for a keyslot must be unique for every actor to prevent a variety of known, and future,

differential cryptanalysis attacks. To accomplish this, the 16 octet value used as the IV for a chunk is combined with

another randomly generated 16 octet value using an exclusive or operation (XOR). The random 16 octet value used in

the XOR operation must be unique for each keyslot. A keyslot stores the randomly generated 16 octet value first

followed by the 16 octet result of the XOR operation. When accessing an encrypted chunk, these two values must be

combined again using another XOR operation to recover the IV. The final 32 octets of a keyslot store the AES key for the

chunk.

CHUNKS

Major question. Do we create different chunk identifiers based on the MIME group? So video, audio, html, markdown,

plain, generic? Clients could stick everything in generic if they wanted.

The currently defined section groupings and chunk types are listed below. Please note that sections have been

highlighted in blue.15

14 Should signatures carry a timestamp with them? A timestamp might stop attacks where an old private key is stolen, and then used
(with a colluding service provider) to deliver a signed message that passes the standard assortment of automated checks. Of course
is the origin domain is colluding, then they could always simply insert a bogus timestamp. To stop that, we’d need the destination
server to also record the delivery time, which would be the perfect piece of data to store in an access chunk.

15 Should we define different display types for the different MIME content types? And possibly even differentiate a few of the
subtypes, like text/plain and text/html, so a client can distinguish which display chunk it should retrieve for display purposes? This

78

Number Name Access Required Duplicates Sequential
0 Tracing Unencrypted N N Y
1 Envelope N/A Y N Y
2 Ephemeral Unencrypted Y N Y
3 Origin AOR Y N Y
4 Destination ADR Y N Y

32 Metadata N/A Y N Y
33 Common AR Y N Y
34 Headers AR N N Y
64 Display N/A Y N Y
65 Display-Multipart AR N Y N
66 Display-Multipart-Alternative AR N Y N
67 Display-Content AR N Y N

128 Attachments N/A N N Y
129 Attachments-Multipart AR N Y N
130 Attachments-Multipart-Alternative AR N Y N
131 Attachments-Content AR N Y N
224 Signatures N/A Y N Y
225 Author-Tree-Signature AOR Y N Y
226 Author-Signature AOR Y N Y
248 Organizational-Metadata-Bounce-Signature AODR N N Y
249 Organizational-Display-Bounce-Signature AODR N N Y
255 Organizational-Signature AODR Y N Y

ENVELOPE

TBD

TRACING

TBD

EPHEMERAL

TBD

ORIGIN

TBD

DESTINATION

would leak information about what information a message is carrying, and make them easier to fingerprint, but could allow a client to
avoid downloading a video message if it didn’t support video (for example on a mobile device). Even if we did add this, there would
be a generic catchall chunk type implementations could use if they didn’t like the leakage.

 79

TBD

METADATA

TBD

COMMON

TBD

HEADERS

TBD

DISPLAY

TBD

DISPLAY-MULTIPART

TBD

DISPLAY-MULTIPART-ALTERNATIVE

TBD

DISPLAY-CONTENT

TBD

ATTACHMENTS

TBD

ATTACHMENTS-MULTIPART

TBD

ATTACHMENTS-MULTIPART-ALTERNATIVE

TBD

ATTACHMENTS-CONTENT

TBD

SIGNATURES

TBD

80

AUTHOR-TREE-SIGNATURE

TBD

AUTHOR-SIGNATURE

TBD

ORGANIZATIONAL-METADATA-BOUNCE-SIGNATURE

TBD

ORGANIZATIONAL-DISPLAY-BOUNCE-SIGNATURE

TBD

ORGANIZATIONAL-SIGNATURE

TBD

ENDIANNESS

The D/MIME format is a binary schema, which relies on numeric values to convey information and facilitate parsing. The

binary values defined by this specification will always use network byte order, which is defined as a big endian

representation, requiring the most significant byte to be stored in the smallest address, and the least significant byte be

stored in the largest address. Implementations running on little endian systems will need to convert the values to ensure

proper processing.

TRANSFER ENCODING

D/MIME is a binary format, and any alteration of the encrypted data would cause the signature validation algorithm to

fail. To ensure messages are handled properly, and without any alteration, messages are encoded using the Privacy

Enhanced Mail (PEM) [PEM] mail format. This allows D/MIME messages to be processed, handled and viewed by humans,

and processed by the customary mail tools and techniques without corruption. Because the PEM format increases the

size of messages, a system specifically designed to handle D/MIME messages may process and store messages in their

binary form. If an implementation does process and store binary D/MIME messages, it must ensure any system, or

component it hands a message to is similarly capable of handling the binary format without corrupting the data. Unless it

obtains such assurances it must first encode a message into the PEM format before transferring it.

The PEM format relies on encapsulation boundaries to delimit individual messages and communicate the type of data

being carried. D/MIME messages must use the “ENCRYPTED MESSAGE” boundary, with the binary D/MIME data armored

using base64 and stored within the boundaries. In contrast to convention, D/MIME messages should not include the

traditional base64 “=” padding characters. Instead the padding octets should be calculated using the formula:

length modulo 4 = pad

 81

The result will determine the number of padding octets required. A D/MIME message armored using the PEM format

would use the syntax:

-----BEGIN ENCRYPTED MESSAGE-----
message
-----END ENCRYPTED MESSAGE-----

82

PART 7: DARK MAIL TRANSFER PROTOCOL (DMTP)

Introduction

DMTP has been engineered to provide the functionality necessary for a mail user agent to fully encrypt messages sent

between two DIME addresses automatically. DMTP is the primary method used by a DIME-enabled mail transfer agent to

securely and reliably deliver a fully encrypted message to its final destination. DMTP takes advantage of the

Dark/Multipurpose Internet Mail Extension (D/MIME) format, a fully encrypted message schema, to ensure a message

can be properly routed while minimizing the leakage of metadata to handling agents. The D/MIME format also ensures

the message contents are protected from eavesdropping and manipulation.

For the encryption process to function automatically, a mail user agent must be able to locate and retrieve the public

encryption keys, which are contained inside a signet, for a given recipient. The task of retrieving and authenticating

signets is performed by a Signet Resolver (SR). Signet resolvers use DMTP to retrieve organization and user signets, to

determine whether cached signets are stale and to retrieve the historical signets required to validate the chain of

custody for an account when it discovers a new user signet.

Unlike traditional mail transfer protocols, DMTP relies on the encrypted message envelope embedded within a D/MIME

message to determine where a message should delivered. This ensures a mail transfer agent only has access to the

information required to accomplish the next step in the delivery process. It is the responsibility of a mail transfer agent to

deliver a message to its destination, or report its failure to do so.

 DMTP is a network protocol that is independent of a specific transport. However, for the purpose of this document, it is

assumed that the DMTP session is between two Internet connected hosts, a client that initiates the connection and a

server that accepts input and responds accordingly. That the two hosts are able to exchange data packets using the

Internet Protocol (IP) [IP], in combination with the Transmission Control Protocol (TCP) [TCP] to establish a reliable data

stream which is used to establish a secure communications channel using the Transport Layer Security (TLS) [TLS]

protocol. Thus, TCP is responsible for the connection layer, IP is responsible for the internetworking layer and TLS is

responsible for protection against network threats. The fallback strategy is to relay data packets printed in hexadecimal

on cellulose pulp that has been dried into flexible sheets and relayed using avian carriers. [AVIAN]

PROTOCOL MODEL

DMTP is intentionally simplistic. Experience has shown that excessively complex protocols are difficult to implement

correctly, with ambiguity often creating incompatibility problems. Complex protocols are synonymous with overly

complex implementations. The layers of abstraction needed to implement a complex protocol often serve to mask

defects or hide subtle security vulnerabilities. To avoid this, DMTP borrows heavily from the Simple Mail Transfer Protocol

(SMTP) [SMTP].

DMTP has been intentionally limited to unauthenticated functionality. The protocol relies on the use of unauthenticated

exchanges to ensure input data is always considered hostile and evaluated carefully before processing. DMTP hosts may

advertise their support for protocol extensions that enhance the required DMTP functionality specified below, provided

the extensions do not require authentication.

 83

DMTP uses a rigid syntax for commands and replies. The protocol relies on a line-based structure, where each line is

considered a semantic unit that can be evaluated independently to determine whether it is time to proceed. The result is

a dialog that is purposefully lock-step, with every request resulting in a reply. Clients must ensure they always wait until

a reply is received before making subsequent requests unless a server advertises support for the command pipelining

protocol extension.

Every request is made using a command, which begins with a verb. Some commands require that arguments be supplied

after a verb, while others allow for optional arguments. A few will never accept arguments. In every case where an

argument is supplied, it is separated from the verb or a previous argument by a space character.

Every command results in a reply; with the reply indicating whether a command was accepted, whether message data or

additional commands should be sent, or that an error occurred. All replies begin with a three-digit numeric code use and

use syntax specified below which allows for single line and multiline responses depending on the outcome and the

information a server needs to supply in the response.

HISTORICAL CONTEXT

DMTP is intended as a replacement for SMTP [SMTP], with modifications focused on improving the privacy and security

of Internet electronic mail (email). As a result, it borrows heavily from the syntactic structure and transaction model used

by SMTP. Readers familiar with SMTP should feel comfortable with DMTP. The relationship between the protocols is by

design, by making SMTP and DMTP semantically similar, it should be easier for someone familiar with the former to

implement and deploy support for the latter.

DMTP does possess three primary differences. First, mailbox names have been removed from the protocol conversation.

The envelope addresses, author and recipient, which are used for routing a message, have been removed from the

protocol conversation, and must be extracted from the encrypted message. Second, commands have been added, using

new verbs, or repurposed SMTP verbs, for transferring user and organizational signets. Finally, TLS support is no longer

optional but a protocol requirement. While DMTP does not rely on TLS for security, it does provide an additional layer of

protection, and a measure of defense, against threats posed by hostile networks. TLS provides perfect forward secrecy

protection from attacks which involve capturing network traffic, and makes traffic analysis more difficult.

 This specification does not provide guidance, nor does it address any of the requirements involved with sending and

receiving unencrypted (or “naked”) messages over SMTP. However, it is important to note that such messages sent via

SMTP are vulnerable, and any organization that does not want their private messages read by unauthorized third parties

should deprecate the use of SMTP and migrate their mail to DIME.

84

Figure 9 - DIME Architecture

LINE BASED PROTOCOL

DMTP lines consist of American Standard Code for Information Interchange (ASCII) [ASCII] characters. ASCII characters

consist of a single octet with the high order bit cleared. For DMTP, this means all protocol messages should consist of

data between the hex values 0x01 and 0x7F.

Protocol commands and responses are exchanged using lines, which complete semantic units. Conforming

implementations must wait until a line terminator is received before evaluating the content of a line and proceeding,

unless a protocol extension has been employed, such as command pipelining. All implementations must be capable of

handling lines which are up to 512 octets in length.

A string of ASCII octets is always followed by a line terminator, which serves the end of the semantic unit. For DMTP the

line terminator must be the character "<LF>" (hex value 0A). Conforming implementations must not generate any other

character sequence for use as a line terminator. Server implementations may choose to recognize the historical line

termination character sequence "CR" (hex value 0D) followed immediately by "LF" (hex value 0A). This optional

functionality would allow for the use various client tools to continue functioning, which are only capable of producing the

<CRLF> sequence.

In addition, the appearance of "CR" or "LF" characters outside of their use as line terminators has a long history of

creating problems. To avoid this issue in the future, DMTP client implementations must not send these characters unless

they are being used as a line terminator, or a protocol extension has been agreed upon.

 85

COMMANDS AND REPLIES

DMTP client commands are comprised of uppercase verbs (i.e. HELO, EHLO, DATA) combined with the specified command

options in the form of KEY=<value> where KEY can be any number of syntactically correct command options. The syntax

of a client command is: COMMAND KEY=<value>.

DMTP host replies are comprised of a numeric response code, followed by an uppercase reply and any freeform text that

an implementer might include (freeform text is optional). The general form of a reply is a numeric completion code

(indicating failure or success) followed by an ASCII string. Generally, the response codes are for programs and the ASCII

text is meant for human readability [SMTP]. The syntax of a host reply is: NUMERIC_CODE RESPONSE_VERB {freeform}.

DMTP commands are transmitted from the client to the DMTP host using one command per line as described above. A

DMTP reply is the result of a host’s success or failure executing the client’s transmitted command.

Replies to DMTP commands maintain the workflow of a mail transfer, guarantees that the DMTP client always knows the

state of the DMTP host, and lets the client know when it is acceptable to send the next command.

Replies fall into one of four possible values (borrowed from RFC 5321 [SMTP]) defined in the following table:

Response Code Description

2yz Positive Completion Reply

3yz Positive Intermediate Reply

4yz Transient Negative Completion Reply

5yz Permanent Negative Completion Reply

A sample DMTP client command and host reply using the HELO command (described in detail later in this chapter):

HELO HOST=<host.domain.tld>

A successful reply from the host with a 250 response code:

250 OK {freeform}

FIRST DIGIT

POSITIVE COMPLETION

DMTP host replies beginning with a ‘2’ indicate that the client command was successfully executed by the DMTP host. It

also serves as notice to the DMTP client that the DMTP host is ready to receive the next command.

POSITIVE INTERMEDIATE

DMTP host replies beginning with a ‘3’ indicate that the client command was successfully accepted by the DMTP host,

but the host is waiting on additional information to complete the request.

86

TRANSIENT NEGATIVE COMPLETION

DMTP host replies beginning with a ‘4’ indicate that the client command was not accepted by the DMTP host. In this

state, the client can restart any command sequence and retry the command that caused the host to reply with a

transient negative completion.

PERMANENT NEGATIVE COMPLETION

DMTP host replies beginning with a ‘5’ indicate that the client command was not accepted by the DMTP host and the

requested action did not occur. In this state, the client should not repeat the request.

SECOND DIGIT

The second digit of the DMTP host response code is used to further refine the information the code is relaying to the

client and the user.

Response Code Description

x0z Syntax Error

x1z Information

x2z Connections

x3z TBD

x4z Unspecified

x5z Mail System

x6z TBD

z7z Signet

SYNTAX ERROR

DMTP host replies with a ‘0’ as the second digit indicate a problem with the DMTP client command syntax.

INFORMATION

DMTP host replies with a ‘1’ as the second digit indicate the reply is in response to a client request for information such

as help.

CONNECTIONS

DMTP host replies with a ‘2’ as the second digit indicate the reply is in reference to the transmission channel.

UNSPECIFIED

There are no replies that have a ‘4’ as the second digit. This may be used for future capabilities.

MAIL SYSTEM

DMTP host replies with a ‘5’ as the second digit indicate the status of the DMTP receiving host.

 87

SIGNET

DMTP host replies with a ‘7’ as the second digit indicate a response to signet related commands from the DMTP host.

THIRD DIGIT

TBD

Command semantics, upper case verbs

Space separated arguments, with email addresses and domain names using always being enclosed by <> and encoded

binary data argument values being enclosed by []… and equal signs used to separate argument names from the value.

Responses, success versus error, theory and severity

Single vs multiline replies

In the replies, kill the ok/error etc. Fixed message text. Plus optional, trailing freeform box “+[freeform]” “-[error]” or

“=[alert]” … do let supporting systems enable/disable this using the verbose command? Aka “VERB” from SMTP.

MAIL TRANSACTIONS

Message transactions.

OBJECTS

Signets and Messages

Modifications - tracing

DELIVERY

Addressing

Validation steps

Mail stores

Bounces

CACHING

How to handle the caching of signet lookups.

CONNECTIONS

A consumer begins the process of initiating a DMTP connection by retrieving the management record for a target domain

name. If no management record is discovered, then a consumer should rely upon its local cache until any previous entries

88

have reached their expiration. If no management record is found, or the cached record has expired, a consumer must

conclude the target domain is not DIME-enabled and does not support DMTP. If a Mail Transfer Agent (MTA) is

attempting to establish a DMTP connection for the purpose of message delivery, it should consider the error temporary

and apply the retry logic supplied below.

If a management record is found, and it contains a valid delivery field (dx) value, consumers should first attempt to

resolve and connect to the provided values using port 26 in single protocol mode. If multiple delivery field values are

encountered, a conforming implementation must attempt at least three unique host names before considering the single

protocol mode attempt a failure and continuing on to try dual protocol mode. It is recommended that consumers attempt

the supplied host names in a random order, independent of what order they appear in a management record.

If the management record does not contain a valid delivery field, or the consumer is unable to establish a DMTP

connection in single protocol mode, it must fall back into dual protocol mode. To find the dual protocol hosts for a

domain, consumers must query the target domain name for a mail exchange (mx) resource record. If a valid mail

exchange record is found, a conforming client must attempt the connection using port 25, and if that fails, may attempt

the connection using port 587. If a TCP connection is established, and then the consumer a consumer should apply rules

specified below for DMTP hosts operating in dual protocol mode. A conforming client must attempt at least three unique

mail exchange resource record host names before continuing.

If a consumer is unable to establish a connection using the logic above, it may consider the attempt a failure, or

optionally attempt to establish a DMTP connection using the target domain name. If a consumer attempts to establish the

DMTP connection using the target domain name, it should attempt a connection on port 26 first, and apply the rules

associated with single protocol mode. If the connection fails using port 26, then a consumer should attempt a dual

protocol connection using port 25, and if that fails, may choose to also attempt a dual protocol mode connection using

port 587.

Valid delivery field values and mail exchange resource records must always be fully qualified host names that resolve to

A or AAAA resource records. The use of IP addresses, or a CNAME is prohibited and conforming implementations should

ignore such values.

If an MTA is unable to locate a valid management record, or establish a DMTP connection using any of the supplied host

names, it should consider the error temporary. If the policy field in the management record indicates a domain is

operating in experimental mode, then a mail transfer agent may continue using SMTP [SMTP]. Otherwise a conforming

MTA must queue and periodically retry the delivery attempt for at least 72 hours. The algorithm used to schedule retries

is intentionally undefined, but a conforming implementation must ensure it will retry delivery at least once every 12

hours. An MTA should use a gradually increasing delay between delivery attempts, provided the interval never exceeds

12 hours. If a consumer is unable to establish a DMTP connection during the required 72 hour period, it must consider the

error permanent and report its failure to deliver the message back to the author.

An MTA may choose to report temporary failures after 4 hours, but must continue making delivery attempts for a during

the entire 72 hour period unless a user intervenes.

 89

All DMTP connections must be secured using TLS v1.2 [TLS] and the cipher suite ECDHE-RSA-AES256-GCM-SHA38416

[TLS-ECDHE]. The required cipher suite is uniquely identified during a TLS handshake by the octet values 0xC0, 0x30.17

CERTIFICATES

DMTP connections must always be secured using TLS [TLS]. This will require that servers be configured to supply an

X.509 certificate during the connection. The certificate provides a signed RSA public key, along with a number of other

attributes. Certificates supplied by DMTP hosts must use RSA keys that are least 2048 bits, and keys of at least 4096 bits

are strongly recommended. DMTP client implementations must support RSA keys up to 8192 bits in length, and should

support RSA keys of 16384 bits in length. If a conforming DMTP consumer encounters a host using an RSA key that is

shorter than 2048 bits, it should complete the TLS handshake and immediately shutdown the connection using the QUIT

command specified below.

DMTP hosts must allow consumers to specify the intended host name for the connection using the Server Name

Identifier (SNI) extension in single protocol mode, and as an argument to the STARTTLS command when operating in dual

protocol mode. If a DMTP host is configured with a TLS certificate containing a Common Name (CN) or Alt Name (AN)

attribute matching the supplied host name, it must supply the matching certificate. If the DMTP host does not have a

matching TLS certificate, it must allow the connection to proceed using a default TLS certificate. Every DMTP host must

be configured with a default TLS certificate.

If the management record provided TLS field values, then consumers must validate TLS certificates against the supplied

values. TLS field values are Ed25519 signatures [EDDSA], and generated using the target domain’s Primary

Organizational Key (POK). If a TLS field value is found, a certificate must be confirmed against one of the supplied field

values. Note that it is possible for a management record to supply more than one TLS field value, in which case all of the

supplied values must be compared until a matching entry is found. If none of the supplied signatures can be validated,

then a consumer must terminate the DMTP connection and notify the user of an error with possible security implications.

TLS certificates must be converted to a concrete data stream using the Distinguished Encoding Rules (DER).

If a management record is validated by a DNSSEC signature, and the certificate was validated against a TLS field value,

then a consumer must accept certificates that would normally be rejected using strict validation. This means consumers

must accept certificates which have been validated using a signed management record that are self-signed, expired

and/or lack a matching Common Name (CN) or Alt Name (AN) attribute.

If a certificate is confirmed using the TLS field value, then a consumer should not perform the Online Certificate Status

Protocol (OCSP) check [OCSP]. OCSP checks are discouraged if the certificate can be validated using the TLS field even if

the management record is not signed using DNSSEC because the request could inadvertently leak information about

 16 The NIST name, and the one reused by the referenced TLS standard is TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384.

17 Should we require ECDHE-ECDSA-AES256-GCM-SHA384 instead? That would allow us to avoid RSA altogether. The problem is that
currently very few CA’s publish certificates signed using ECDSA. Alternatively, should we make support for the DHE variants optional?
That is DHE-RSA-AES256-GCM-SHA384 or DHE-ECDSA-AES256-GCM-SHA384?

90

which domains a host is contacting. All other X.509 validation rules should be applied according to the TLS v1.2

specification regardless of whether the certificate is validated using the management record.

DNSSEC Validation TLS Field Validation X.509 Validation OCSP Check Result
Yes Matches N/A N/A Pass
Yes None Passed Yes Pass
Yes None Failed N/A Fail
Yes Mismatch N/A N/A Fail
No Matches Passed Skip Pass
No Matches Failed N/A Fail
No None Passed Yes Pass
No None Failed N/A Fail

SINGLE PROTOCOL MODE

If a consumer is using the host name supplied by the delivery field in the management record, it must connect to the

provided host using port 26. The connection should be initiated using TLS [TLS]. Consumer should supply the host name

provided by the delivery field, or “dx” value, in the management record using SNI TLS extension [TLS-SNI]. Connections

to port 26 must be specifically for DMTP and upon successfully connecting, consumers must see a banner that starts with

the sequence 220 and contains the string “DMTP”. Single protocol mode greetings must match the pattern:

220 <domain.tld> DMTP {freeform}

If a consumer does not encounter the appropriate DMTP protocol banner once the TLS connection has been established,

it must immediately shutdown the connection and treat the host name the same way it would if the TLS connection had

never succeeded. Consumers conforming to this specification must make TLS connection attempts to at least three valid,

and unique, delivery field host names before continuing. If fewer than three unique and valid delivery field host names

values are found, then a consumer should try all of the unique and valid host names it encounters.

DUAL PROTOCOL HOSTS

When attempting a DMTP connection using a hostname supplied by a mail exchange (mx) resource record, a consumer

should assume the host is operating in dual protocol mode and attempt an unencrypted TCP [TCP] connection using port

25. If port 25 fails, a consumer may attempt the TCP connection using port 587. If either port results in a TCP connection,

the consumer should confirm whether a host supports DMTP by parsing the banner greeting before proceeding. A DMTP

capable host operating in dual protocol mode must greet consumers with a banner that starts with 220 and contains the

string “DMTP”. Dual protocol mode greetings must match the pattern:

220 <domain.tld> ESMTP DMTP {freeform}

If the appropriate banner is encountered, a consumer must immediately elevate the TCP connection into DMTP mode

using the STARTTLS command syntax specified below. If the consumer does not encounter the appropriate dual protocol

banner, it must fail immediately and continue as if the TCP connection never succeeded. To elevate a successful TCP

connection into DMTP mode, consumers must initiate a TLS handshake using the STARTTLS command syntax:

 91

STARTTLS HOST=<domain.tld> MODE=DMTP

If a dual protocol host encounters a MODE parameter for a consumer attempting to elevate a connection into DMTP

mode, but is unable to negotiate a TLS connection using the cipher suite specified above, then the host must ensure a

STARTTLS command fails. If a consumer does find that it connected to a host that allows elevation into DMTP, without

using the required cipher suite, it must immediately issue a QUIT command and shutdown the connection. Consumers

that encounter this scenario should alert the user to a possible security threat before proceeding.

A connection which has been successfully elevated into DMTP mode must receive a reply with the status code 250, and

a response string which contains “DMTP”. The response should match the following pattern:

250 OK DMTP {freeform}

Dual protocol implementations may choose to allow consumers to issue the STARTTLS command with the MODE

parameter missing, or with a MODE parameter that supplies the value SMTP. Hosts that support TLS connections in SMTP

mode must ensure the connection does not allow consumers to use any commands using the DMTP protocol syntax.

Attempts to issue DMTP commands must result in a response code of 501, denoting an invalid syntax. The lone

exception to this rule is the MODE command, which must result in response indicating the connection is in SMTP mode.

For consumers which successfully establish a TLS connection but remain in SMTP mode, the greeting should be a 250

response code matching the following pattern:

250 OK ESMTP {freeform}

Note that both STARTTLS responses supplied above indicate the current protocol mode after completing the TLS

handshake using the third token in the response. Thus consumers conforming to this specification must consult the

server response returned by a host in response to the STARTTLS command and ensure the connection is using the

appropriate protocol mode before proceeding.

Once a connection has been secured using the STARTTLS command a host conforming to this specification must reset all

state information for the connection. This includes discarding the hostname values provided as parameters to the HELO

or EHLO commands. If a consumer is proceeding with the connection in SMTP mode then it must issue the HELO or EHLO

command before attempting to transfer a message.

TIMEOUTS

Consumers must provide a timeout mechanism for unresponsive server connections, while the enforcement of

connection timeouts remains optional for server implementations. Timeouts should be calculated based on the amount of

time that has lapsed since a complete line has been transmitted or received. If an implementation is unable to track

timeouts based on when the last complete line DMTP protocol line was sent or received, the recommended alternative is

to rely on the amount of time since any DMTP characters were sent or received. We strongly recommended avoiding a

strategy of relying on the time elapsed since a TLS message, or TCP packet was observed. It is possible for TLS

connections to exchange TCP packets indefinitely without ever exchanging any DMTP protocol data.

92

Server implementations lacking the ability to track timeouts based on the last DMTP character transmitted, or lack

support for timeouts altogether, will waste resources on paralyzed client connections. However, if a consumer lacks

support for tracking timeouts based on DMTP protocol data, it could result in unnecessary user distress. For a Mail User

Agent (MUA), this could result in lengthy send operations, as the User Privacy Agent (UPA) waits for a signet resolution

to complete. If the consumer is a Mail Transfer Agent (MTA), this issue could result in messages being rejected, or

bounced, because they were delayed beyond the expiry threshold for a stale user signet.

CONSUMERS

Below are the recommended timeouts a consumer should use for the different categories of possible DMTP operations.

However, a more sophisticated implementation may choose to use timeouts based on a higher level of granularity than

what’s provided here. In our experience, such an implementation should be patient when it comes to waiting on

commands which involve a large transmission, whether its sending a message or receiving a signet, and with commands

which involve the setup process for a DMTP connection, such as the TCP connection setup, a TLS handshake, or the

receipt of an initial greeting once the TLS channel has been established. These operations could employ multiple systems,

any of which could be suffering from congestion. The following timeouts are intended only to be recommendations, with

the one exception being the amount of time between when an MTA finishes transmitting a message and the receiving

host acknowledges its acceptance. An MTA must wait at least 8 minutes for such an acknowledgement and may want to

wait longer if a message was particularly large.

Timeout Range
Recommended

Connection Setup Operations
TCP setup, TLS handshakes, Connection Banners

4 to 8 minutes

Protocol Mode Elevation Commands
STARTTLS

4 to 8 minutes

Global Commands
HELO, EHLO, MODE, RSET, NOOP, HELP

2 to 8 minutes

Mail Processing Commands
MAIL, RCPT, DATA

8 to 16 minutes

Signet Retrieval Commands
SGNT, HIST, VRFY

1 to 4 minutes

Connection Termination Command
QUIT

1 to 2 minutes

SERVERS

 93

A server implementation must use a timeout of at least 1 minute. Servers should employ timeouts between 4 and 20

minutes, with a timeout of 10 minutes being recommended. We recommend that servers that normally employ a

timeout shorter than 1 minute, increase their timeout to 4 minutes while processing a mail transaction. This means

increasing the timeout after a successful MAIL command, until the transaction is concluded.

While the practice of enforcing timeouts based on the overall time for a DMTP command to complete is not

recommended, if a server does employ this strategy, it must ensure consumers are allowed a minimum of 30 minutes to

complete the transmission of messages following a successful DATA command, and a similar minimum of 30 minutes to

finish receiving a multiline response following a successful SGNT, HIST, or VRFY command.

Sophisticated server implementations may want to dynamically adjust their timeouts based on network congestion to

differentiating between TCP congestion and a client that ceases to transmit packet acknowledgements. It may also want

to differentiate between the timeout it employs while receiving or transmitting data, and the time it waits for an idle

connection to send a DMTP command.

The above timeouts are intended to apply while server is operating normally and should not apply to servers which are

in the process of shutting down.

TERMINATION

A DMTP connection should, under normal conditions, only be terminated in response to a consumer sending the QUIT

command. Consumers sending this command should wait for the server to acknowledge the receipt of a QUIT command

transmit a positive reply.

A server must not intentionally choose to unilaterally terminate a DMTP connection under normal operating conditions

unless a consumer has exceeded the configured timeout, or is in the process of shutting down. Specifically, servers must

not terminate DMTP connections in response to an unknown command, because of syntax violations, or because a

command was sent out of order.

If a server does encounter a situation where it needs to unilaterally close a DMTP connection, it must first transmit a line

starting with the status code 421, to indicate the abnormal closure. Presumably, a consumer will receive and process the

response as a reaction to a previously transmitted command, or asynchronously as the response to its next command. A

server should follow this transmission by attempting to cleanly shutdown the TLS connection. DMTP clients must always

be prepared to handle the abnormal shutdown of a connection. This means gracefully handling a DMTP reply which starts

with the status code 421, or being notified the of a TLS shutdown.

If an MTA experiences an abnormal shutdown during a message transfer operation, it must treat the delivery attempt as

if a response code of 451 was returned, and ensure the message delivery attempt is retried.

Sometimes abrupt communications failures can result in the unexpected closure of connections. Despite being a violation

of this specification, this situation will inevitably, and unavoidably, arise and must be handled gracefully. The robustness

of DIME depends upon implementations being able to handle failure and retry the aborted operation using a different

DMTP host, or when the original host comes back online.

94

GLOBAL COMMANDS

The following commands must always be available to consumers regardless of the protocol mode or connection state:

HELO, EHLO, MODE, RSET, NOOP, HELP, VERB, and QUIT. This includes a connection to a dual protocol host that has not

been elevated into DMTP mode.

For signet resolvers, issuing a HELO or EHLO command is not recommended, and should be avoided to prevent the

unnecessary leakage of meta-information about a consumer. If the consumer is an MTA, it must send either the HELO or

EHLO command before attempting a mail transaction. If the MTA is connected to the host using the dual protocol mode, it

must send, or resend, the HELO or EHLO after the connection has been elevated to DMTP.

HELO

Consumers may use the HELO command at any time. If the host already has a host name stored for the current

connection, it must replace the stored value with the newly issued host name. Unlike the EHLO command below, the

HELO command does not list the supported protocol extensions in its reply. This command requires a single parameter in

the form of a fully qualified domain name. If the consumer does not have a meaningful host name to supply, it should

send an address literal. If a host name is supplied, it should resolve to an address literal matching the current connection.

The HELO command uses the following syntax:

HELO HOST=<host.domain.tld>

Successfully issued HELO commands must result in a single line reply, with a response code of 250 in the form:

250 OK {freeform}

EHLO

The EHLO command is identical to the HELO command above with one notable exception. A successful EHLO command

will result in a reply that lists the protocol extensions supported by a DMTP host. If the host does not support any

protocol extensions, then it will result in a reply that is identical to the HELO command. This command requires a host

name as the first argument, and uses the syntax:

EHLO HOST=<host.domain.tld>

The EHLO response may use the multiline response structure. The additional lines will provide keywords, with each

corresponding to a protocol extension. DMTP hosts operating in dual protocol mode must return the DMTP and STARTTLS

keywords in their response to the EHLO command for connections that have not issued the STARTTLS command and

successfully completed a TLS handshake. The following is a potential EHLO response returned by a dual protocol host on

a connection that has not been elevated into DMTP mode:

250-DMTP
250-STARTTLS
250-PIPELINING
250-SIZE 33554432

 95

250 OK {freeform}

In contrast, the EHLO response for single protocol connections, or a dual protocol mode connection that has been

elevated into DMTP mode, should never include the DMTP or STARTTLS keywords. The following is a potential EHLO

response returned to a consumer over a DMTP connection:

250-PIPELINING
250-SIZE 33554432
250 OK {freeform}

Note that when a consumer connects to a dual protocol host, it must discard the list of protocol extensions returned by

an EHLO command submitted before the connection was elevated. Dual protocol hosts are likely to send a list of protocol

extensions after a connection has been elevated into DMTP that is distinctly different from the list sent before elevation.

MODE

The MODE command is the only DMTP command that a dual protocol host should accept before a connection is elevated

into DMTP. The MODE command accepts no arguments and is used by consumers to confirm the protocol mode for the

current connection. A consumer may issue the MODE command using the following syntax:

MODE

The response to a MODE command matches the reply issued after a successful STARTTLS command. The 250 response

code should be followed by the current protocol mode for the connection in the third token. A DMTP connection must

result in a reply matching the syntax:

250 OK DMTP {freeform}

In contrast a connection operating in SMTP mode, must reply with the following response regardless of whether the

connection has been secured using TLS:

250 OK ESMTP {freeform}

For legacy servers which lack support for DMTP, the MODE command should result in a 500 response code to indicate the

MODE command was unrecognized. Hosts which are DMTP capable, but currently have DMTP support disabled, should

reply using the 502 response code to indicate the MODE command was recognized, but currently has DMTP support

disabled.

RSET

The RSET command is used to reset the state information for a connection. It operates in a fashion that is similar to the

STARTTLS command specified above, with the exception that the RSET command does not destroy a host name which

was supplied as an argument to the HELO or EHLO commands. The RSET command accepts no arguments and uses the

following syntax:

RSET

96

 A RSET command that is accepted by a server, will return a 250 response code to indicate the state table was

successfully reset, with the reply conforming to the syntax:

250 OK {freeform}

If a consumer encounters a response code other than 250, it must clear the state table by disconnecting from the DMTP

and reconnecting.

NOOP

The NOOP command is used by consumers to keep a DMTP connection alive, and should result in no operation being

carried out by either host. The NOOP command does not require an argument, but servers must accept NOOP commands

that supply command arguments provided they conform to the limitations specified above. This means the entire

command line, including the line terminator, must be 512 octets or less in length and only contain valid ASCII character

values. The command uses the syntax:

NOOP {freeform}

Valid NOOP commands must result in a reply using the 250 response code and match the pattern:

250 OK {freeform}

HELP

The HELP command is used by administrators on interactive DMTP connections to retrieve the list of commands

supported by the DMTP host. Support for this command is optional. The command itself does not accept an argument,

and is issued using the syntax:

HELP

Servers with the HELP command enabled may use the multiline response structure and must reply using a response code

of 214. It is recommended that server implementations always return the list of available DMTP commands in

alphabetical order. The following reply includes a listing of the DMTP commands a host is required to support:

214-DATA
214-EHLO
214-HELO
214-HELP
214-HIST
214-MAIL
214-MODE
214-NOOP
214-QUIT
214-RCPT
214-RSET
214-SGNT
214 VRFY {freeform}

 97

A DMTP host may choose to disable support for the HELP command. To indicate this, a DMTP server should reply using

the 502 response code to indicate the HELP command was recognized but has been disabled:

502 COMMAND DISABLED

QUIT

The QUIT command terminates a connection gracefully. A DMTP host must initiate send the appropriate response and

subsequently initiate a controlled shutdown of the TLS connection. The QUIT command accepts no arguments and uses

the syntax:

QUIT

A DMTP server must acknowledge its receipt of a QUIT command by transmitting a reply using the 221 response code:

221 BYE {freeform}

If a consumer does not receive a reply from the DMTP server a timely fashion, it may choose to begin the shutdown

process in accordance with the TLS protocol specification. [TLS]

MESSAGE TRANSFER COMMANDS

The following commands are used to transfer messages between organizations using atomic mail transactions. The

commands have been constructed for securely and reliably delivering messages while minimizing the amount of

metadata a compromised handling agent is capable of leaking. The commands described in this section must not be sent

by a consumer, or accepted by a server, until either the HELO or EHLO command have been sent. These commands

require a consumer to provide its fully qualified host name, and for a server to indicate its acceptance of the value by

replying with a successful status code. If any of the commands in this section are submitted before a successful HELO or

EHLO, a server must respond with the status code 503 to indicate an invalid sequence of commands.

 A mail transaction is an atomic transaction requiring a consumer to send, and a server accept all three commands

specified in this section, in the sequence: MAIL, RCPT and DATA. If the RCPT or DATA commands are received out of

order, then a server must respond with a 503 status code to indicate an invalid sequence of commands.

 If the RSET command is received before a mail transaction is completed, then any pending mails transactions must be

aborted. A conforming MTA must ensure it retains responsibility for a message until it receives a successful response to

the DATA command. This concludes the mail transaction and transfers responsibility for delivering message to the

destination host. If a message is accepted by a destination, and it encounters a problem delivering a message, it must

generate and deliver a bounce back to the origin domain.

MAIL

The MAIL command is used to start a new mail transaction. The command has two required arguments. The FROM

argument must be sent first and is followed by the FINGERPRINT argument. FROM is used to provide the origin domain

98

name for a pending message, while FINGERPRINT provides the full fingerprint for the origin signet required by a

destination host to authenticate the organizational signature attached to the pending message.

 A destination host must ensure it has a cached copy of referenced origin signet referenced before replying with a

successful status code. If it the origin signet has not already been stored, a destination host may choose to delay sending

a response to the MAIL command until it has successfully retrieved, and authenticated the origin signet. However, if this

simultaneous retrieval attempt does not completed within 4 minutes, a destination host must reply with the status code

of 470. A destination should immediately reply with the status code 470 if it prefers, or is unable, to perform a

simultaneous origin signet lookup. The response code 470 is used to indicate an origin signet is temporarily unavailable,

and that an MTA must queue the message and reattempt the transfer in the future. If a destination host repeatedly tries

and fails to retrieve an origin signet for 72 hours, it should return the response code 570 to any MAIL command

referencing the origin signet in question. The response code of 570 is used to indicate the prolonged failure to retrieve

the origin signet. The destination host should continue making retrieval attempts until it succeeds, or if an additional 72

hours lapses without encountering a reference to origin signet in question.

A server must only respond to a MAIL command with a success response if a new mail transaction is started. If an MTA

sends the MAIL command before completing the pending transaction has been completed, a server must abort the

previously started transaction before evaluating the newly submitted MAIL command. As a result, servers must produce

identical results for MAIL commands regardless of any potentially pending mail transactions. This also means the

outcome of a MAIL command resulting in an error must be semantically equivalent to the outcome of an RSET command

resulting in success; both must result the pending mail transaction being aborted without starting a new transaction.

The syntax used to submit a MAIL command with its two required parameters is:

MAIL FROM=<domain.tld> FINGERPRINT=[fingerprint]

If an MTA attempts a MAIL command before it submits a valid HELO or EHLO command, then a server must respond with

a response code of 503 to indicate the invalid command sequence:

503 INVALID COMMAND SEQUENCE {freeform}

If the submitted MAIL command references an origin signet which is unavailable on the destination host, a server should

reply using the status code 470, which must result in the message being queued and retried. The syntax for the 470

status message is:

470 ORIGIN SIGNET UNAVAILABLE {freeform}

If a destination has been attempting to retrieve the reference origin signet for at least the previous 72 hours, then it

should indicate a permanent origin signet failure using the status code 570 and the syntax:

570 ORIGIN SIGNET UNAVAILABLE {freeform}

If the origin domain lacks a management record, or the authoritative server for the origin domain returns an error when

the referenced signet is requested, then a DMTP host should respond using the error code 575 to differentiate it from an

origin signet timeout:

 99

575 INVALID ORIGIN SIGNET

If a destination host does have the referenced origin signet available in its cache, it should allow the transaction to

proceed by returning a response code of 250 using the syntax:

250 OK {freeform}

If the fingerprint does not match what the destination has in its cache for domain.tld, this command would initiate a side

channel lookup.

RCPT

The RCPT command is used to confirm a message is being delivered to the correct host and was created using a current

and available destination signet. It requires two arguments, TO parameter and the FINGERPRINT parameter. The TO

parameter must provide a target domain that the destination host is configured to accept messages for. The

FINGERPRINT parameter provides the full fingerprint for the destination signet used to encrypt the recipient information.

The RCPT command uses the following syntax:

RCPT TO=<domain.tld> FINGERPRINT=[fingerprint]

If the destination host needs to reject a message because the fingerprint indicates the recipient information was

encrypted using an expired or otherwise invalid destination signet, it should respond with a status of 576, clear any state

information associated with the mail transaction and use the syntax:

576 INVALID DESTINATION SIGNET {freeform}

If a RCPT command is submitted twice in a single mail transaction, the second attempt must be rejected using the 431

response code. A DMTP mail transaction is only capable of being associated with a single recipient, so if a RCPT was

already accepted, the resource limits would be exceeded by accepting a second RCPT command. The limitation is a

byproduct of the D/MIME format, which intentionally limits the envelope to a single recipient, which prevents anyone

from discovering how many people a message was originally addressed to. This requires that a message be transferred

separately for each recipient as standalone mail transactions. To indicate a rejection resulted from this limitation server

should use the following response syntax:

431 DESTINATION LIMITS EXCEEDED {freeform}

If the RCPT parameters indicate a recognized destination domain and the fingerprint indicates the embedded recipient

information will be accessible, a server should reply using the status code 250 to allow the MTA to proceed with the

transaction by sending the message data. The success response syntax is:

250 OK {freeform}

100

DATA

The DATA command is used to transfer a D/MIME message to the destination host. Provided the MTA has successfully

issued MAIL and RCPT commands, a DATA command should result in a 354 response code, indicating the destination host

is ready to receive the message. A client should proceed to transmit the D/MIME message in its ASCII armored form. The

transmission sequence is terminated by the string “<LF>.<LF>” which is sent to indicate the transmission has been

completed. The sender must then wait at least 8 minutes for a reply, presumably a sender should wait at least 1

additional minute for every megabyte used by the transmitted message. If the DMTP host responds with the code 254,

then the mail transaction is complete. A response code between 400 and 499 will indicate the current attempt failed, but

the issue was temporal and the sender should retry the transmission later. A response code over 500 indicates a

permanent failure, that the error is likely to persist, and that an origin host should proceed to notify the author of the

failure. Once the 254 code has been sent, responsibility for the transmitted message shifts from the origin MTA to the

destination MTA. If a DMTP host, after having transmitted the 254 response code, discovers that it is unable to deliver a

message, then it must bounce the message back to the origin to ensure the author is properly notified of the failure.

Alternatively, if a message is delivered, but the 254 response code is never received by the sender, because it

disconnected before the 254 response was received, when it retransmits the message, it is possible the retransmission

will only result in the message being duplicated in a recipient’s mailbox. Sophisticated server implementations may want

to detect this issue by tracking the cryptographic hashes for any recently delivered messages and compare those hashes

against incoming messages. If a duplicate message is detected, then a host may return the response code 255 which

indicates the message successfully delivered on a previous attempt.

The transmission process begins with a DATA command. The default DATA command does not allow arguments to be

included. The syntax for the command is:

DATA

If the DMTP host is ready to receive the message it will respond using the 354 banner shown below:

354 READY TO RECEIVE MESSAGE

Once a sender sees the 354 response, the sender may begin transmitting the message. The sequence “<LF>.<LF>” is

used to terminate the message transmission:

-----BEGIN ENCRYPTED MESSAGE-----
Bv0AAdcBhvAmjVKiMZmjF8gTnXNTDZ4C1W8MSWfh5NLIdzquujQCBJkg4dcp7m8tjp7JFrW
kowv1bp1a1pIJNyIbbh
Y0CpFaF4z2L8mjcJq5Pl+J/lF4iKrJc7tJYWCueGeJiYgQci0vKUiRHqyr1wkjMUbmdY954
udPiAVzHJplUj6ZtjdA
bSeJhM4nrLzQe5wXR6n8fMDsHtJvZNb1PZSMycs7rMoNDEY6pjjo8Y70k0E3jLy9SHcCBhA
78k9y8JEDzT7M7Udi8o
wooUGwENp3upYuhxd/bzoZg53TdQbNM2RKcGKozSQK2gHKpFI59gjwcZBUxhZGFyGwRDYXZ
lHhJDb3VudHJGggY2FX
FXppcGNvZGUgd2l0aG91dCBjYXZlcyADNDExfjd0pQ0k4DXvBfUNNFxir+IzghryyCr67G9
jEa44VD8Q1EW1xC/TF2
mfylpmL2iueTyPz50kAY9Qd/EWxhZGFyQGxhdmFiaXQuY29tgI7gaXq2Nu7dVKmu8i78jjB
1uOeU8VbjZQUM9L79Wu
dMC2yD4vW76cGkb8hrGL/y8H0IshRpNeOAM

 101

-----END ENCRYPTED MESSAGE-----
.

Upon receiving a message, a server must ensure the D/MIME is structurally correct and contains a valid organizational

signature from the origin domain before accepting a message. If the message is does not contain a valid D/MIME binary

structure, the DMTP host should immediately return a 451 error code:

451 DATA CORRUPTED

If the organizational signature for the message is missing, or invalid, then a server must return the 578 error code:

578 INVALID ORIGIN SIGNATURE

A server may also decrypt the destination portion of the D/MIME message and confirm the validity of the recipient, and

whether the recipient signet used to encrypt the message is either current, or is within the expiry threshold for stale user

signets. Alternatively, a DMTP host may also accept a message and commit to bouncing it later if these checks fail. If the

message is validated before responding, and the recipient mailbox is invalid, or not affiliated with the destination domain

provided by the RCPT command, then a DMTP host must respond using the 510 error code:

510 INVALID RECIPIENT

If the message was encrypted using an expired user signet, then a DMTP server must respond using the 586 error code:

586 INVALID RECIPIENT SIGNET

If received message passes all of the checks described above, then the message should be queued for delivery and the

254 response code returned to the sender along with a cryptographic hash of the binary message data received, and

transmitted in its base64 encoded form, without padding, yielding a message transaction identifier that is precisely 86

bytes long:

254
ACCEPTED=MUYwQkNENDY0MzE3OEQyOTAxRDEwMjlFThDQUZEOTM4NkY5NFE5RDE5NTUxMg

 If the host tracks the cryptographic hashes for recently accepted messages, and a duplicate message is detected, then it

should return the 255 response code to indicate the message has already been delivered. This response must only be

returned if the message has already been delivered to the mailbox. If the previous transfer attempt failed, then it must

not be considered a duplicate. Successful deliveries result in a response using the syntax:

255
DUPLICATE=MUYwQkNENDY0MzE3OEQyOTAxRDEwMjlFRUREOTM4NM4NkY5NjERDE5NTUxMg

Regardless of the response code, a sender must consider the mail transaction terminated. If it intends to retransmit the

message, or begin the transmission of a different message, it must begin the command sequence again using the MAIL

command.

102

SIGNET TRANSFER COMMANDS

SGNT

The SGNT command is used to retrieve user and organizational signets from an authoritative source using DMTP. The

command requires a consumer to supply the DOMAIN argument, and may be submitted along with the FINGERPRINT

argument. The DOMAIN argument must be sent first, and a FINGERPRINT value, if supplied, must be sent second. The

SGNT command syntax for retrieving an organizational signet is:

SGNT DOMAIN=<domain.tld>

An almost identical syntax is used for retrieving user signets, with the syntactical exception that a mailbox is supplied

using the USER argument:

SGNT USER=<mailbox@domain.tld>

A consumer may want to retrieve a specific version of a user or organizational signet, possibly because the fingerprint

was supplied using the MAIL command above, or because it is trying to retrieve a signet referenced elsewhere. To

retrieve a specific signet a consumer would use the second optional argument, which accepts a full fingerprint for the

requested signet, after it has been base64 encoded, and the padding bytes removed. The resulting values for the

FINGERPRINT argument should be exactly 86 bytes. The complete syntax for SGNT command syntax when retrieving a

specific organizational signet:

SGNT DOMAIN=<domain.tld> FINGERPRINT=[fingerprint]

When a consumer is requesting a specific user signet, it may supply either the full fingerprint or the cryptographic

fingerprint for the user signet it wants to retrieve. Note that a server must always return a full signet in response to the

SGNT command, even if a cryptographic fingerprint is submitted. The syntax for retrieving a specific user signet is:

SGNT USER=<mailbox@domain.tld> FINGERPRINT=[fingerprint]

A conforming server implementation must only return organizational signets for domains in which it is the authoritative

source. If the requested organizational signet is available, it must be returned in its ASCII armored form, and if the

fingerprint argument is omitted, a host must return what is considers the current organizational signet for the supplied

domain name. When returning an organizational signet, a server must use the multiline syntax and the 270 response

code:

270------BEGIN ORGANIZATIONAL SIGNET-----
270-
BvAAAWEBQt1Wjk8S+DkuEbOLgfQTvVyS7Ae7NjwonNLI+TRoDYUCBOYleb/SnE7FZjZYsjv
+
270-
BpyT6l4bHZj3Pd0s9QGE0rXCy9PWsCPwAmFC2aVVcG3NTaONDtmz3LS1lKgkFv9B/wB8hkL
T
270-
dCBMTEMbGzEyMyBIaWRkZW4gQnVua2VyIEJvdWxldmFaW5ndWxhcmlhHwUwMDAxMSALMw5P
U

 103

270-
EqMnb0cbDDFBatu9tTMAi7ERNkWGLqWda2IG0EWjp7QF/qC0byTh7Is+YexkCT+xz0yL3AL
b
270-
dC5jb22AFjee+3raziK2GZYoFErVAsJKXbRay9fY/GNihmZgd9SBZrJUnu8XA99RKQrlnn1
2
270------END ORGANIZATIONAL SIGNET-----
270 OK {freeform}

Like organizational signets, a conforming server implementation must only return user signets for domains in which it is

the authoritative source. If the requested user signet is available, it must be returned in its ASCII armored form, and if the

fingerprint argument is omitted, a host must return what it considers to be the current user signet. When returning a user

signet, the full signet must always be returned, even if the consumer supplies a cryptographic fingerprint. When

returning a user signet, the server must use the multiline syntax and the 280 response code:

280------BEGIN USER SIGNET-----
280-
Bv0AAdcBhvAmjVKiMZmjF8gTnXNTDZ4C1W8MSWfh5NLIdzcp7m8jklKZtjp7JFrWkNyIbb
280-
hjaxY0CpFaF4z2L8mjcJq5Pl+J/lF4iKrJc7tJYWCueGeJiYgQci0vKUiRHqyY9Zo5dPiA
280-
6ZtjmmdAbSeJhM4nrLzQe5wXR6n8fMDsHtJvZNb1PZSMycs7rMoNDEY6pjjocCBhA79y8J
280-
7AeM7Udi8oGAwooUGwENp3upYuhxd/bzoZg53TdQbNM2RKcGKozjwcZBUxhZGFyGwRDZlH
280-
IHdpdGggY2F2ZXMfFXppcGNvZGUgd2l0aG91dCBjYXZlcyADNXBXvBfUNNFxir+IzghyCr
280-
8Q1E3j7EqVW1xC/TF2KGmfylpmL2iueTyPz50kAY9Qd/EWxhZGFyQGxhdmFiagI7gaXq8i
280-8Vbjj47aXZzQUM9L79WuqTuLdMC2yD4vW76cGkb8hrGL/y8H0IshRpNeOAM
280------END USER SIGNET-----
280 OK {freeform}

If a fingerprint parameter is provided, then a host must return the signet matching the fingerprint, or an error. If no signet

is available for the requested address, then a server must also return a 486 or 576 error. A server may optionally apply

fuzzy matching logic to a non-matching identifier based on common alternate representations of a domain or email

address and suggest the true identifier using the temporary error code 486. Multiple potential matches are allowed, with

each potential identifier provided on a separate line. The following example shows a possible server request using an

international character:

SGNT USER=<ũser@example.tld>

In a situation where the precise email local part identifier does not match a user signet, but several similar identifiers

exist on the system, the possible response might be:

486-IDENTIFIER=<ūser@example.tld>
486-IDENTIFIER=<ŭser@example.tld>
486-IDENTIFIER=<ůser@example.tld>
486-IDENTIFIER=<űser@example.tld>
486-IDENTIFIER=<ųser@example.tld>
486 IDENTIFIER=<user@example.tld>

104

Whether suggestions are returned based on greedy matching is optional, and precisely what logic is applied to an

identifier is localized to the host locale, and a signet resolver must exercise caution when accepting such suggestions. If

no matching users are encountered, then a permanent 576 error must be returned:

576 SIGNET UNAVAILABLE

If the domain or address is valid, but the signet is unavailable, a server may choose to return the error code 476 instead.

If the domain advertises a policy of experimental in its management record, then a consumer may choose to send the

message using SMTP if this error is received. Otherwise clients must either retry the request later, or return an error to

the message author.

476 SIGNET TEMPORARILY UNAVAILABLE

If the domain or email address is submitted valid identifier but does not precisely match the available does not precisely

match an , but the signet is unavailable, a server may choose to return the error code 476 instead. If the domain

advertises a policy of experimental in its management record, then a consumer may choose to send the message using

SMTP if this error is received. Otherwise clients must either retry the request later, or return an error to the message

author.

HIST

Allows a resolver to retrieve the chain of user signets between a trusted signet fingerprint (START) and a recently

encountered user signet (END). If both fingerprint values are valid, then the host should return only the cryptographic

signets published by the user between the two values. If the end fingerprint value is missing, the server must provide all

of the cryptographic signets through the current user signet. This command must not be used to retrieve organizational

signets.

The HIST command has one required argument, and two optional arguments. The USER argument is required and used to

provide the email address being queried. The USER argument must always come first. If provided, the START argument

must follow the USER argument, and provides the cryptographic fingerprint for a user signet at the start of a chain of

custody query. The final argument is STOP and if included, provides a cryptographic fingerprint for the last user signet

that needs to be returned. If the START parameter is missing, then a DMTP server should return the first signet from the

user’s current chain of custody. If the STOP parameter is missing, then the server should provide all of the user signets

between the START value and the current user signet. If both arguments are missing, then a server must return the

entire chain of custody for the current user signet.

HIST USER=<mailbox@domain.tld> START=[fingerprint] STOP=[fingerprint]

A DMTP server must be capable of providing the cryptographic signets in a user’s chain of custody, from the root, all the

way to the current user signet. A server may provide user signets beyond a user’s current chain of custody, but should

only return these if provided a starting fingerprint that reaches past the current user signet’s root. Results are provided

using the multiline syntax, and the 290 response code:

290------BEGIN USER SIGNET-----

 105

290-
Bv0AAQUBhvAmjVKiMZmjF8gTnXNTDZ4C1W8MSWfh5NLIdzqp7m8jklKZtjpwvYgpIJNyIbb
290-
jaxY0CpFaF4z2L8mjcJq5Pl+J/lF4iKrJc7tJYWCueGeJiYgQci0vKMUbmdY9Zog5HJLN6Z
290-
tjmmdAbSeJhM4nrLzQe5wXR6n8fMDsHtJvZNb1PZSMycs7rMoNDEY6jLy9S8JEDR8bF4R7A
290-M7Udi8oGAwooUGwENp3upYuhxd/bzoZg53TdQbNM2RKcGKozSQK2gHKpFI59gjwc
290------END USER SIGNET-----
290 OK {freeform}

If the start or end fingerprint values fall outside of the current user signet’s current chain of custody, then a server may

return the 576 response code. A server should also return the 576 response code if the user signet requested is

unavailable. In a situation where the precise email local part identifier does not match a user signet, but several similar

identifiers exist on the system, a host may use the 486 response to suggest possible matches:

486-IDENTIFIER=<ūser@example.tld>
486-IDENTIFIER=<ŭser@example.tld>
486-IDENTIFIER=<ůser@example.tld>
486-IDENTIFIER=<űser@example.tld>
486-IDENTIFIER=<ųser@example.tld>
486 IDENTIFIER=<user@example.tld>

Whether suggestions are returned based on greedy matching is optional, and precisely what logic is applied to an

identifier is localized to the host locale, and a signet resolver must exercise caution when accepting such suggestions. If

no matching users are encountered, then a permanent 576 error must be returned:

576 SIGNET UNAVAILABLE

VRFY

Allows a consumer to determine whether a signet is current. If a signet has been rotated, then the response will return

the current signet. Signet resolvers should use “refresh” value provided by a domain’s management record to determine

how often it should confirm that a signet is current. This command must accept cryptographic fingerprints for users and

full fingerprints for organizations, and should reject requests where the consumer supplies a full fingerprint for a user

signet. The VRFY command requires the DOMAIN and the FINGERPRINT arguments, and uses the following syntax:

VRFY DOMAIN=<domain.tld> FINGERPRINT=[fingerprint]

If the organizational signet is current, the following is returned:

271 ORGANIZATIONAL SIGNET CURRENT {freeform}

Or to verify that a user signet is still current:

VRFY USER=<mailbox@domain.tld> FINGERPRINT=[fingerprint]

If a user address was supplied and the signet is still current:

281 USER SIGNET CURRENT {freeform}

106

Otherwise an update is returned using the same syntax as the SGNT command. Where an organizational signet uses the

270 response code:

270------BEGIN ORGANIZATIONAL SIGNET-----
270-
AWEBQt1Wjk8S+DkuEbOLgfQTvVyS7Ae7NjwonNLI+TRoDYUCBOYl/SnE7p0FZjZYsA6W9j
270-
BpyT6l4bHZj3Pd0s9QGE0rXCy9PWsCPwAmFC2aVVcG3NTXsQ5VhYPjK/l3aONDtmz3LS1l
270-
dCBMTEMbGzEyMyBIaWRkZW4gQnVua2VyIEJvdWxldmFyZB4PUG9zdC1TaW5ndWxhcmlhHw
270-
EqMnb0cbDDFBatu9tTMAi7ERNkWGLqWda2IG0oTP22njpchB2KEWjp7QF/qC0byTh7Is+Y
270-
dC5jb22AFjee+3raziK2GZYoFErVAsJKXbRc2Zxu1Z3oXAJ1ay9fY/GNihmZgd9SBZrJUn
270------END ORGANIZATIONAL SIGNET-----
270 OK {freeform}

Or if a user address was supplied that was updated, the 280 response code is used to return the updated user signet:

280------BEGIN USER SIGNET-----
280-
Bv0AAdcBhvAmjVKiMZmjF8gTnXNTDZ4C1W8MSWfh5NLIdzquujQCBJkg4dcp7m8jklKkow
280-
hjaxY0CpFaF4z2L8mjcJq5Pl+J/lF4iKrJc7tJYWCueGeJiYgQci0vKUiRHqyr1wkjMU/5
280-
6ZtjmmdAbSeJhM4nrLzQe5wXR6n8fMDsHtJvZNb1PZSMycs7rMoNDEY6pjjo8Y70k0E3jL
280-
7AeM7Udi8oGAwooUGwENp3upYuhxd/bzoZg53TdQbNM2RKcGKozSQK2gHKpFI59gjwcZBR
280-
IHdpdGggY2F2ZXMfFXppcGNvZGUgd2l0aG91dCBjYXZlcyADNDExfjd0pQ0k4DXBXvBfUn
280-
8Q1E3j7EqVW1xC/TF2KGmfylpmL2iueTyPz50kAY9Qd/EWxhZGFyQGxhdmFiaXQuY29tgQ
280-8Vbjj47aXZzQUM9L79WuqTuLdMC2yD4vW76cGkb8hrGL/y8H0IshRpNeOAM
280------END USER SIGNET-----
280 OK {freeform}

RESPONSE CODES

Code Description
214 HELP
221 BYE
250 OK
254 ACCEPTED=identifier
255 DUPLICATE=identifier
270 OK
271 ORGANIZATIONAL SIGNET CURRENT
280 OK
281 USER SIGNET CURRENT
290 OK
291 USER SIGNET CURRENT
354 READY TO RECEIVE MESSAGE

 107

421 CONNECTION REQUIRES ABNORMAL TERMINATION
431 DESTINATION LIMITS EXCEEDED
450 ACCESS DENIED
451 DATA CORRUPTED
470 ORIGIN SIGNET UNAVAILABLE
486 IDENTIFIER=identifier
500 COMMAND SYNTAX ERROR
501 ARGUMENT SYNTAX ERROR
502 COMMAND DISABLED
503 INVALID COMMAND SEQUENCE
510 INVALID RECIPIENT
570 ORIGIN SIGNET UNAVAILABLE
575 INVALID ORIGIN SIGNET
576 INVALID DESTINATION SIGNET
578 INVALID ORIGIN SIGNATURE
586 INVALID RECIPIENT SIGNET

PROTOCOL EXTENSIONS

SIZE

TBD

BINARY

TBD

UNICODE

TBD

PIPELINING

TBD

SURROGATE

Indicates that the true destination host indicated by the TLS SNI extension, or as an argument to the STARTTLS command,

could not be reached. However, the current host will act as a surrogate to accept and relay the D/MIME message onto its

destination when the host becomes available. This extension allows individuals to host a DIME server at home, without

revealing the destination host address literal to a consumer, and allow consumers to consume DMTP services for the

target domain even when the destination host is offline by offering signets and accepting messages for future delivery.

108

PART 8: DARK MAIL ACCESS PROTOCOL (DMAP)

The Dark Mail Access Protocol (DMAP) specification will not be released with this draft, but will be added to this

document in the future. DMAP will be an authenticated protocol and is intended for use between end user MUA and

organizational servers. A few of the key elements currently being planned for DMAP are:

 The authentication mechanism will be rely on cryptography, allowing a user to prove they know the

account password, without the server ever receiving it. Sometimes called ZKPP. This information will

also be used to derive the keys needed to decrypt account data. Details still under development.

 DMAP will handle the submission of messages. The org signature will need to be appended before the

message is relayed to another domain, although this doesn’t need to be handled by the DMAP

implementation.

 DMAP server will accept user signet signing requests and, if once approved/signed, will notify the

user’s client that a new signet has been published.

Some of the elements still in development, which may be removed:

 Facilitate the synchronization of a user’s encrypted key ring. The key ring is responsible for storing

private key information.

 Store encrypted copies of user signet rings. The signet ring is used to store management records,

organizational signets, and user signets.

 Allow authenticated users behind a firewall to proxy their signet lookups, at the expense of privacy.

 Retrieve encrypted log entries. Log entries may contain security alerts18, outbound delivery reports19,

service provider notifications, and system broadcasts.

Some of the elements being removed, which are currently available with IMAP:

 The protocol will not include server-side search because all email is encrypted on the server.

 The “fetch” command, or its equivalent will be dramatically simplified, selectors will be limited to

retrieving specific chunks, or entire messages.20

18 Such as information about failed login attempts, or the IP addresses recently used to access the account.

19 A simple record which provides the outcome of a message submitted for relay to another domain. A simple success, error X, or
pending indication. If this information is stored in a user’s encrypted log queue, then a service provider won’t need to keep the
information stored in plain text log files, just so they can handle technical support requests. Of course most of them probably will
either way.

20 A handful of IMAP clients use the “chunking” feature of IMAP, allowing them to download a result in pieces. Should DMAP allow
clients to pull D/MIME chunks in pieces? Consider the maximum possible chunk size is 16 MB – any MIME body parts larger than 16
MB will be split across chunks. The encryption scheme and chunk layout dictate that an entire chunk be downloaded before
decryption. A complete chunk will also be needed to verify the signature taken over the cleartext.

109

PART 9: GLOBAL LEDGER

Currently in the design phase, the future implementation of the global ledger will enhance or replace the need for

DNSSEC acceptance and deployment. Since the adoption of DNSSEC may continue to be slow, the introduction of the

DIME global ledger will provide a non-reputable external record of user signet publications that a client can consult

independently of a provider and thus detect when their provider might be complicit in an attack on their account.

External sources also provide non-reputable evidence of a possible service provider MitM attack.

A few of the key elements currently being planned for the Global Ledger are:

 A defined set of trusted global ledger hosts deployed around the world with operational oversight

from the Dark Mail Alliance (DMA).

 Allow for DMTP lookups of user and organizational signets providing a non-reputable record of

signets.

 Provide key management that is redundant across sources to aid in the detection of compromised

servers.

 Stand as the de facto source for public signets for all DIME implementations.

110

PART 10: DARK MAIL ALLIANCE

The purpose of the Dark Mail Alliance (DMA) is to bring the world an ubiquitous end-to-end encrypted email standard.

The DMA will be responsible for evangelizing the DIME amongst implementers and providers, and manage/coordinate

the deployment of infrastructure projects like the global ledger, which are provided by independent DMA member

organizations (or individuals)

The DMA partners will work to bring other members into the alliance and assist them in implementing the DIME

standards. The DMA will also hold the rights to any DIME intellectual property in trust, such as the DIME trademarks. The

DMA will also work to develop and maintain an open source reference implementation of the DIME standards to address

privacy concerns regarding back doors.

 111

PART 11: THREATS

A user’s concern for private email exchanges can involve protection of basic content or extend to their social network

information – who they exchange mail with, and when – and can vary by the amount of trust they place in their email

service provider. Dark Internet Mail Environment (DIME) builds upon classic Internet Mail [IMA] and provides strong

privacy protection using encryption, covering metadata, overall message structure, and individual message content

including attachments. DIME also ensures message authenticity, integrity and verifiable non-repudiation.

Privacy exposure can be due to passive or active third-party impostors, with wiretapping that captures message traffic

over the wire, compromise of a mail handling host or a key management host, or collaboration by a host operator.

DIME’s design provides a range of protections that combine to defend against each of these categories of threats.

Key management by end users, and even system operators, is a major barrier to the use of security-related services.

Therefore, to the extent possible, DIME’s encryption details are designed to operate automatically. Great care has been

taken to make it difficult for an attacker to subvert the automated aspects of the system undetected. Because error

messages and security warnings can be confusing to users, the system provides for alternate mechanisms so clients can

overcome common anomalies without compromising security or requiring user intervention. The goal is to create a

system sufficiently resilient so that the occurrence of a non-recoverable security error is most likely to be due to system

compromise, or because someone in a privileged network position is attempting to carry out an attack.

Service providers occupy a trusted position in the DIME ecosystem. However, a client can choose among three service

trust levels to considerably narrow this dependence. In particular, it determines a server’s access to the user’s private

keys using account modes (Trustful, Cautious and Paranoid).

This document discusses the privacy goals for the DIME protocols and formats, how those goals are achieved and what

assumptions are made [SPARROW]. A core goal is attending to different types of users and their trust of an associated

organization server. We highlight assumptions, and detail specific aspects of the design intended to mitigate common

attack vectors. Unless otherwise noted, this document assumes the “Cautious” account mode is being utilized.

THREATS

VENUES

The primary concern is unauthorized information disclosure, that is, situations where the user loses control over the

release of their private information. Different types of information need different types of protection. A related concern

is authentication of the participants in an exchange, both end users and service providers, so that fraudulent content is

avoided.

The types of information compromise of concern include:

112

Author spoofing: Whether the purported creator and submitter of a message is the actual agent of

action.

Figure 10 – Author Spoofing

Service provider spoofing: Knowing that the intended provider (mail, key, DNS) is the actual provider.

Figure 11 – Service Provider Spoofing

 113

Message content disclosure: Limiting disclosure only to authorized parties or recipients.

Figure 12 – Message Content Disclosure

Message structure disclosure: Even without knowing the detailed content, knowing about message size,

attachment structure, and attachment data types can help an attacker.

Metadata disclosure: Any other structured data, involving participant and message attributes, which can

be stored and subjected to social and network traffic analyses. This includes

relationships and activity. Who is talking with whom; when and how actively?

114

Figure 13 – Metadata Disclosure

VECTORS

A variety of avenues can be exploited to achieve unauthorized disclosures:

Password: The basic unit of local authentication within a system.

“[A challenge is] how to authenticate securely with the service provider without

revealing the password (since the password is probably also used to encrypt the

private key and other secure storage, so it is important that the service provider does

not have cleartext access as with typical password authentication schemes).”

[SPARROW]

Key: “[P]ublic-key encryption to allow[s] a user to send a confidential message to the

intendant recipient, and for the recipient to verify the authorship of the message.

Unfortunately, public-key encryption is notoriously difficult to use properly, even for

advanced users. The very concepts are confusing for most users: public key versus

private key, key signing, key revocation, signing keys versus encryption keys, bit

length, and so on. This is where we are now: we have public key technology that is

excessively difficult for the common user, and our only methods of key validation have

fallen into disrepute.” [SPARROW]

Organizational Signet: Information tied to a specific domain name, including the public keys associated with

that domain name. The authoritative source and verification information for an

organizational signet is advertised using a DIME management record in the DNS system

and is considered authentic when retrieved from an authoritative DMTP server and

 115

validated by the DIME management record. No further validation steps are necessary if

the management record was signed using DNSSEC. The organizational signet may also

carry with it policy information for the domain. Compromising the private keys

associated with an organizational signet or replacing an organizational signet with a

fraudulent one could allow an attacker to generate fake user signets and spoof the

organization identity.

User Signet: Information included with a person’s public key that helps others verify that a key is

genuine or valid; it can carry related profile information for the entity being identified.

Assessing signet validity is a distinct step. Compromising the user signet resolution

process could allow an attacker to advertise fraudulent public keys allowing them to

spoof an identity or access encrypted message contents only if the victim later uses

the spoofed ID. A user signet is considered authentic when a retrieved from an

authoritative DMTP host and the signature is authenticated using the keys contained

within organizational signet.

Domain name: Domain names are basic unit of global identification on the Internet. Domain names are

associated with records of information through public queries of the Domain Name

Service. Trusting DNS servers, or at least DNS records, is the foundation for email

service. The primary long-term path for improving that trust is the widespread adoption

of DNSSEC.

Transmission Channel: Monitoring traffic across a transmission link (wiretapping) can be simply passive

copying or it can be active spoofing via a man in the middle attack (MitM) that relays

messages between both ends, making them believe that they are talking directly to

each other over a private connection. TLS is the primary means of protection against

wiretapping; MitM protection requires that the server’s X.509 certificate is validated

using a CA from a certificate authority, or using a management record signed using

DNSSEC, authenticating the server’s affiliation with the owner of the target domain

name.

Client: A compromised end-point permits the attacker to impersonate the user or, at least, to

see all of the user’s data. It could also permit the attacker to steal keys and passwords,

obtain cleartext message information, or otherwise weaken on-going services to

facilitate later interceptions by introducing malware. Additionally, a poorly

implemented client or MUA could break the cryptographic mechanisms employed by

DIME.

Mail Server: A compromised mail server (MSA, MTA, MDA, MS) can access any mail information that

is in the clear or that the server is able to decrypt. Depending upon the capabilities of

the client and the account mode, the amount of trust a user must place in their mail

server can be greatly reduced.

116

Key Server: Compromising a server that holds private encryption keys permits an attacker to

decrypt data and thereby break DIME’s protection. Redundant sources for signet

information can aid in the detection of compromised key servers attempting MitM

attacks.

DNS Server: A compromised server can permit creation of false records under a target domain

name. DNSSEC authenticates records, independent of the server providing them.

Gateway: Transition between a protected email environment, such as DIME, and an unprotected

one, such as naked Internet mail, usually requires operation of service gateways. They

create opportunities for spoofing and downgrade attacks.

Persistence: Advanced Persistent Threats (APT) typically entails an attacker with a privileged

network position, ability to perform extensive and long-term data collection and apply

massive computational resources. This creates its own line of attack, beyond those

vectors normally of concern.

MITIGATION STRATEGIES

DIME minimizes information that is exposed to intermediaries along the mail-handling path, including what is available to

the initial origin and destination service providers. Content is protected by multiple layers of encryption reducing reliance

on single-points of failure for providers of keys and signets.

MESSAGE PROTECTION

A message is a hierarchical object, comprising several distinct handling-related and payload components. This permits

efficient handling of distinct portions over limited channels and by clients with limited capabilities, as well as permitting

separable protection. Only a thin “outer” component of the message transits with unencrypted information.

In terms of handling and protection, each copy of a message is between the author and one recipient. The basic message

handling model has twolevels, with an organization component and a user component. The organization provides public-

facing services, at the granularity of a domain name. An individual user’s involvement with a message, such as their full

email address, is visible only to their associated organization server and the other end user associated with this message.

The basic message protection model encrypts the entire message, as well as each component, using a different key for

each portion that is encrypted. This permits independent handling of different message components and protects

envelope information by encrypting those portions with different user and organizational keys.

 117

Figure 14 – Basic Message Protection

ACCOUNT MODES

A user’s reliance on an associated organization server can be at three different service trust levels, selectable by the

user:

 Trustful: Comparable to the level of trust placed in a service provider for typical email services historically. In

effect, the service handles all privacy issues on behalf of the user. DIME provides protection for

messages in transit over the Internet, but the end-user’s service provider is fully trusted. In particular,

the server has direct access to the user’s private keys. Users access email using traditional access via

SMTP and IMAP over SSL. Although it is implementation specific, it is recommended that the user’s

private key be protected using the user’s password.

Cautious: In this mode the server holds encrypted copies of a user’s private keys and messages. This is

convenient for multi-platform users, while reducing the amount of information a compromised

service provider can disclose. Because the service provider never has access to the decrypted private

key, they are unable to access a user’s messages, or publish new user signet without triggering a

break in the chain of custody. This mode is designed to facilitate the adoption of DIME without

requiring end users to modify their behavior to obtain the additional benefits of encryption without

the traditional encryption costs.

118

Paranoid: This mode provides the server with almost no user security information. In particular, the server

never has access to the user’s private keys, even in encrypted form.

A thin client is more dependent upon the service provider, since it has few, or none of its own, independent capabilities.

Webmail is typically an example of complete reliance on the provider, since any software running on the client comes

from the provider; however, a proper thin client implementation that performs encryption in the user’s browser will not

have complete access to all user information. In the event a thin client is exploited by an attacker to contain malicious

code, it could circumvent security to gain access to user information. The recommended approach is a thick client

independently obtained and installed and fully under the control of the user.

ATTACK VECTOR MITIGATION

The following discussion explores the likely approaches for preventing or detecting problems in each part of the system

subject to attack.

PASSWORD

User access to a server is controlled through an account password. It is used to authenticate with a server; however
is never sent to the server. Rather the password is used to derive information that is sent. The server only stores a

pre-nonced hash and account key pair, with the private account key being encrypted by the password on the user’s

device. Hence, if the server is compromised it cannot reveal the password, or even provide the required elements to

successfully spoof authentication. The amount of entropy associated with a user’s password is improved with user

specific salts, and the number of hash rounds being varied based on plaintext length. Organizations can further

improve passwords by imposing a variable number of additional hash rounds.

SIGNET

Signet Assignment: Signets are associated with an organizational domain or a user address based on the

semantic context of a signet resolver query.

NETWORK PACKET CAPTURE

FORWARD SECRECY

“Traditional schemes for forward secrecy are incompatible with the asynchronous nature of email communication,

since with email you still need to be able to send someone a message even if they are not online and ephemeral key

generation requires a back and forth exchange between both parties.

“...Another possible approach is to use traditional encryption with no support for forward secrecy but instead rely on

a scheme for automatic key discovery and validation in order to frequently rotate keys. This way, a user could throw

away their private key every few days, achieving a very crude form of forward secrecy.” [SPARROW]

Network level packet captures are useless with DIME because all connections are protected using TLS v1.2 and

require the use of a cipher suite which provides for perfect forward secrecy (PFS). If an organization can protect

 119

their TLS private key, then they can ensure attackers are also unable to MitM the organization’s TLS connections and

can achieve PFS at a wire level.

PFS for message objects, as the description above suggests, is far more difficult, and contrary to the nature of email.

However, a DIME user using the “paranoid” account mode could still obtain PFS for messages by routinely rotating

their signet, and destroying the private keys associated with their former signet once the expiry threshold has been

reached. Because the private keys were never synchronized with the server, the user can be assured that deletion

means the keys could never be recovered, thereby providing PFS even if the messages were intercepted and

recorded by a server.

SIGNET AND KEY MANAGEMENT

BASIC MANAGEMENT AND OPERATION

No single source of key information is automatically accepted by the entity making the query. It always must have a

confirmation.

Key creation: 1. Trustful Mode: The user signet and the corresponding private keys are generated on

the server. The server appends the organization signature plus optional attributes such

as name, address, telephone, etc. and a second organizational signature. The two

organization signatures allow the cryptographic portion of the user signet to be split

from the optional attribute portion. The server stores this signet internally and makes it

available via DMTP.

2. Cautious Mode: The desktop client generates a Signet Signing Request (SSR) and the

corresponding private keys and submits to server over DMAP with the private keys

encrypted. The server appends the organization signature plus optional attributes such

as name, address, telephone, etc. and a second organizational signature. The server

stores this signet internally and makes this available via DMTP. The encrypted private

keys are available to the desktop client via DMAP.

3. Paranoid Mode: The desktop client generates the SSR and submits the SSR to the

server over DMAP. The server appends attributes (such as names, address, telephone,

etc.) and organization signature. The server stores this signet internally and makes this

available via DMTP. The encrypted private key is stored on the desktop client and

never transferred to the server.

Signet discovery: The desktop client performs a lookup of the management record for a domain using

DNSSEC. If there is a DIME management record (MR), it retrieves the Primary

Organization Key (POK) from the MR and the organizational signet via a DMTP

connection. The organizational signet is validated against the POK retrieved via DNS. If

a DIME MR is not signed using DNSSEC, the DMTP server must use a TLS certificate

validated by a recognized certificate authority (CA).

The DMTP server will respond to queries for user and organizational signets. Note that

120

some clients might not be able to make direct TCP/TLS connections to a DMTP server

because of firewall rules; they will need to proxy requests through their local DIME key

server, presumably over an authenticated DMAP connection. This could create an

additional avenue for metadata to leak, such as what signet a user retrieves.

Signet validation: A signet is validated by a confirming query via DNS, in addition to the primary means of

obtaining and validating it. For an organization-level signet, the secondary query can be

via a pre-authenticated source (recognized CA) or DNSSEC. For a user-level signet,

confirmation is through a chain of custody if the signet is already in the user’s signet

cache, in addition to confirmation of an organization signature.

 Signet availability: Organization and user signet availability will vary based on deployment decisions and

user configuration options. From an organizational viewpoint, access to the

organization’s private key will be required for signing operations and decryption of

delivery information. This will require every DMTP server to have access to the private

key, or for more sophisticated deployments, access to a centralized key server that

performs all of the organizational level cryptographic operations. Note the

trustful/cautious/paranoid modes for end-users; they can choose to share the

unencrypted private keys with the server, just the encrypted private keys, or nothing

at all. Which option they choose will determine how they can access their account, and

where user level cryptographic operations occur.

Signet revocation: To revoke a potentially compromised user signet, a user simply needs to publish a

replacement public signet and wait the specified time-to-live for the compromised

signet to expire. Once the TTL expires, servers will have to query for the signet again.

When an organizational signet is compromised, all existing user signets must be

resigned and republished. Because of the potential overhead for large organizations,

this issue further stresses the requirement that each organization must protect their

corresponding organizational private keys at all costs. If an organizational signet is NOT

compromised, but simply changed, the previous organizational keys can be added to

the new organizational signet as secondary keys21.

Key rollover: A chain of custody is established for a sequence of signets. As a new signet is

introduced, it is signed by its predecessor signets. This permits automatic acceptance of

a new signet when the previous one is already in a user’s signet ring. It is based on the

reasonable assumption that the owner of the new signet had access to the private key

associated with the trusted signet.

ORGANIZATIONAL SIGNET

21 In this context, this can be considered an estoppel (i.e. a revocation).

 121

An organizational signet is generated by a system administrator who installs the key into a DMTP configuration and

associates the signet with a domain. The administrator configures the DNS for the domain in question to provide the

associated validation record. Because of the manual process associated with publishing new organizational signets,

the assumption is they will change infrequently. While user signets will have TTL values specified in minutes,

organizational signets would use TTL values measured in days; the recommendation is organizations will change

signets every 1 to 3 years and have high TTLs (16-32-64 days).

An organizational signet, and its associated private keys, is used to:

 Sign user signets

 Sign outbound messages

 Decrypt ‘recipient’ chunk on received messages

 Decrypt ‘author’ chunk for outbound messages before signing

 Decrypt ‘author’ chunk for bounce message

 Validate signatures before accepting bounces

USER SIGNET

A user signet is generated automatically by a user’s client submitted using DMAP. The public signet is published on

an authoritative DMTP server. Whether or not the user’s private keys are shared with their organization’s server

depends on the account mode (trustful, cautious, and paranoid). In trustful mode, each device the user has can get

access to keys through the organization’s DMAP server. In paranoid mode, the user must use an independent

mechanism when using multiple devices for synchronizing keys.

To minimize the amount of data exposed by a compromised private key, users are encouraged to have their signets

rotated automatically. The time period recommended will likely vary by user, but could range from a handful of days

to a period of weeks. Users who suspect their private keys have been compromised can trigger a manual signet

rotation ahead of the scheduled rotation.

To provide a robust validation model, a potential sender has multiple avenues for confirming that a specific public

key belongs to a user address. The primary basis is that a public key was retrieved from an organization’s

authoritative key store, and contains an organization signature that can be traced to a verifiable and trusted

organizational signet. This constitutes basic authenticity and typically means the key can be trusted unless: the

lookup request(s) was subverted or the organization is complicit in an attack (assuming the organization’s key has

not also been compromised). Additional verification paths are designed to allow detection of such attacks.

A verifiable chain of custody can illustrate that the owner of an address may have changed recently; this can be used

by people with a previous trusted signet in their local cache. Finally, the use of the optional global ledger can provide

a non-reputable external record of user signet publications that a client can consult independently of a provider and

thus detect when their provider might be complicit in an attack on their account. External sources also provide non-

reputable evidence of a possible MitM attack by a user’s organization or service provider.

122

A user signet, and its associated private keys, is used to:

 Decrypt inbound messages.

 Sign outbound messages.

 Sign new public signets before submitting them to the organization’s server for publication.

DOMAIN NAME

The DNS system controls whether a domain supports DIME and provides the trusted anchor for organizational and

user signets. In effect, compromising the DNS records would permit an attacker to gain authoritative control over a

domain’s identity. The primary long-term path for ensuring the validity DNS information and responses is DNSSEC.

TRANSMISSION CHANNEL

TLS is the primary means of protecting against wiretapping and the tampering of data in transit. For TLS to provide

MitM protection a server certificate must be validated with an X.509 certificate signed by a certificate authority or

against a TLS field provided by an MR signed using DNSSEC.

CLIENT

Client implementations will perform the user level cryptographic operations. Like email today, we anticipate a large

variety of DIME client implementations will be created. They will likely range from thick applications that run on

desktop and mobile devices, to thin clients written in JavaScript that are loaded from a web server at runtime.

Because the user level cryptographic functions are performed by the client for cautious and paranoid users, it is

important that these client implementations properly implement the cryptographic primitives and conform to the

user interface and implementation standards supplied. These standards will ensure client implementations follow a

baseline for the secure handling of sensitive information like passwords and private keys. Clients will also be

responsible for communicating to users which inbound and outbound messages are protected by encryption because

they involve DIME-enabled domains, versus those that were sent naked using traditional mail protocols.

MAIL SERVER: MSA, MTA, MDA

Email content and data structure are protected by a proper DIME implementation; however, it is still the

responsibility of the mail server organization to follow security best practices and secure the mail server.

KEY SERVER

Key management that provides redundant sources can aid in detection of compromised servers. Sources can be

authoritative servers or be replicated through syndication to a partner domain’s servers or in the future to the global

ledger.

DNS SERVER

Distinct from using DNSSEC to authenticate DNS content, the responsibility for securing a domain’s DNS servers

remains with the organization.

 123

Primary protection is accomplished by DNSSEC. However, if DNSSEC name validation cannot be used, it is still

possible to reach a trusted state by publishing a DNS record AND using a TLS certificate that has been signed by a

trusted Certificate Authority.

GATEWAYS

SMTP gateways provide the ability for DIME users to exchange messages with users at domains that do not support

DIME. These gateways accept incoming SMTP messages from non-DIME domains and encrypt them using a user’s

current key before storing it on the server. Likewise, outbound messages can be relayed through a gateway to an

SMTP host. It should be possible to translate, without any information loss, between the SMTP MIME format and the

D/MIME message format. It is worth noting that organizations can choose to disable SMTP access at a domain level,

or allow users to disable SMTP access at a user level. It is also important to understand that because SMTP messages

may be transmitted in the clear in a worst-case scenario, and rely on TLS for protection in a best-case scenario, that

users understand when they are sending out messages to a DIME-enabled domain versus when they send naked

messages via traditional email.

PERSISTENCE

For network level protection, DIME relies on TLS cipher suites that provide perfect forward secrecy. For message

level protection, we assume that most users will want to retain persistent access to their historical message corpus.

This implies retaining private keys to facilitate the future decryption of messages or alternatively, clients storing

messages in their decrypted form locally before deleting a given private key.

HUMAN FACTORS

System security is often compromised through social engineering and other challenges with user and operator

behavior. Simply implementing DIME does not replace good user education and competent operational security. Bad

passwords, poor protection of private keys, and situational factors (such as leaving a laptop, no matter how short

the length of time, unattended at the airport) cannot be mitigated by DIME. Depending on the implementation,

examples of efforts to mitigate human factors include tailoring the user’s interface, such as flagging information that

is to be more or less trusted, and compensatory computation, as might be used to counteract a shorter password.

124

PART 12: ATTACKS AND MITIGATIONS

TBD

 125

PART 13: KNOWN VULNERABILITIES

THIS PAGE INTENTIONALLY LEFT BLANK

126

PART 14: CREDITS

AUTHOR

LADAR LEVISON

Ladar Levison is the Founder of Lavabit, LLC, which served as a place for free and private email

accounts. By August of 2013, Lavabit had grown to over 410,000 users. Levison created

Lavabit because he believes that privacy is a fundamental, necessary right for a functioning,

free and fair democratic society. On August 8, 2013, he made the bold decision to shut down

his business after refusing to become "complicit in crimes against the American people."

Presently, Levison is serving as the lead architect for the Dark Internet Mail Environment.

Levison continues to vigorously advocate for free speech and the right to privacy, speaking at

conferences, and collaborating on projects which are working to give back control of the Internet to the people.

CONTRIBUTORS

DAVE CROCKER

David H. Crocker is a principal with Brandenburg InternetWorking. He designs network-based

applications businesses and distributed system architectures. His focus is on the creation of

Internet-based businesses built on a solid foundation of customer benefit and revenue potential.

Dave worked in the ARPA and NSF CSNet network research community during the 1970s and

early 1980s, and led product development efforts at MCI and various Silicon Valley companies, into the 1990s. He then

founded several startup companies, serving as CEO for one. Dave has developed and operated two national email

services, designed two others, and was CEO of a community non-profit ISP. His senior management product efforts cover

email clients and servers, core protocol stacks for TCP/IP and OSI, network management control stations, and knowledge

management tools for product support. For his work on email, Dave was a co-recipient of the 2004 IEEE Internet Award.

Dave has been leading and authoring Internet standards for forty years, covering Internet mail, instant messaging,

security, facsimile and EDI. He has also contributed to work on Internet commerce, domain name service, emergency

services, and TCP/IP enhancements. He has authored more than 50 IETF Requests for Comments. Dave served as an Area

Director for the Internet Engineering Task Force (IETF) variously overseeing network management, middleware and the

IETF standards process. He has also been a member of the IETF's administrative and legal oversight bodies (IAOC/Trust).

UNNAMED CONTRIBUTORS

The DIME team would like to thank the gracious help of numerous, yet unnamed, contributors without whose dedication

and time this publication would not be possible.

 127

ATTRIBUTION

The document author’s borrowed heavily from referenced RFCs and other sources for several sections. The team

provides full attribution to the extent possible; however, if a reader notices an unintentional missing attribution, please

notify the author for correction. The DIME team owes a debt of gratitude to the hard work of the many Internet

revolutionaries that got us to this point.

128

PART 15: REFERENCES

[AES] National Institute of Standards and Technology, "Specification for the Advanced Encryption Standard (AES)", FIPS

197, November 2001.

[ASCII] Cerf, V., ASCII format for Network Interchange, RFC 20, October 1969.

American National Standards Institute (formerly United States of America Standards Institute), “USA Code for

Information Interchange”, ANSI X3.4-1968, 1968.

[AVIAN] Waitzman, D., A Standard for the Transmission of IP Datagrams on Avian Carriers, RFC 1149, April 1990.

[DANE] Hoffman, P., Schlyter, J., The DNS-Based Authentication of Named Entities (DANE) Transport Layer Security (TLS)

Protocol: TLSA, RFC 6698, August 2012.

[DANGER] Bernstein, D., Tanja, L., Security dangers of the NIST curves, September 2013.

[DKIM] Allman, E., et al., DomainKeys Identified Mail (DKIM) Signatures, RFC 4871, May 2007.

[DOMAIN] Mockapetris, P., Domain Names - Concepts and Facilities, STD 13, RFC 1034, November 1987.

Mockapetris, P., Domain names - implementation and specification, STD 13, RFC 1035, November 1987.

[DNSSEC] Arends, R., Austein, R., Larson, M., Massey, D., Rose, S., DNS Security Introduction and Requirements, RFC 4033,

March 2005.

[E123] International Telecommunications Union, Recommendation E.123: Notation for national and international

telephone numbers, e-mail addresses and web addresses, February 2001.

[ECDH] Blake-Wilson, S., et al., Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS), RFC

4492, May 2006.

[EdDSA] Bernstein, D., High-speed high-security signatures, September 2011.

[GCM] Dworkin, M., Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC, SP

800-38D, November 2007.

[GZIP] Deutsch, P., GZIP file format specification version 4.3, RFC 1952, May 1996.

[IMA] Crocker, D., Internet Mail Architecture, RFC 5598, July 2009.

[IMF] Resnick, P., Internet Message Format, RFC 5322, October 2008.

[IP] Postel, J., Internet Protocol, RFC 791, September 1981.

[ISO639-1] International Organization for Standardization, Codes for the representation of names of languages - Part 1:

Alpha-2 code, ISO 639-1:2002, July 2002.

 129

[ISO639-2] International Organization for Standardization, Codes for the representation of names of languages - Part 2:

Alpha-3 code, ISO 639-2:1998, October 1998.

[ISO3166-1] International Organization for Standardization, Codes for the representation of names of countries and their

subdivisions - Part 1: Country codes, ISO 3166-1:2013, November 2013.

[ISO4217] International Organization for Standardization, Codes for the representation of currencies and funds, ISO

4217:2008, October 2008.

[ISO15924] International Organization for Standardization, Information and documentation - Codes for the representation

of names of scripts, ISO 15924:2004, January 2004.

[LOC-LANG] The Library of Congress, Language Tag Registry, March 2015.

[KEYWORD] Bradner, S., Key words for use in RFCs to Indicate Requirement Levels, RFC 2119, March 1997.

[LANGUAGE] Phillips, A. and M. Davis, Tags for Identifying Languages, BCP 47, RFC 5646, September 2009.

[IANA-LANG] Internet Assigned Numbers Authority, Language Subtag Registry, March 2015.

[MIME] Freed, N., Borenstein, N., Multipurpose Internet Mail Extension (MIME) Part One: Format of Internet Message

Bodies, RFC 2045, November 1996.

Freed, N., Borenstein, N., Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, RFC 2046,

November 1996.

Moore, K., MIME (Multipurpose Internet Mail Extensions) Part Three: Message Header Extensions for Non-ASCII

Text, RFC 2047, November 1996.

Freed, N., Klensin, J., Multipurpose Internet Mail Extensions (MIME) Part Four: Registration Procedures, RFC 4289,

December 2005.

Freed, N., Borenstein, N., Multipurpose Internet Mail Extensions (MIME) Part Five: Conformance Criteria and

Examples, RFC 2049, November 1996.

[OCSP] Myers, M. et al., Online Certificate Status Protocol, RFC 2560, June 1999.

[PEM] Linn, J., Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption and Authentication

Procedures, RFC 1421, February 1993.

[PGP] Callas, J. et al., OpenPGP Message Format, RFC 4880, November 2007.

[PGP-ECC] Jivsov, A., Elliptic Curve Cryptography (ECC) in OpenPGP, RFC 6637, June 2012.

[PGP-EdDSA] Koch, W., EdDSA for OpenPGP, March 2014.

[PNG] Boutell, T., PNG (Portable Network Graphics) Specification Version 1.0, RFC 2083, March 1997.

130

Portable Network Graphics, Specification Information technology—Computer graphics and image processing—

Portable Network Graphics (PNG): Functional specification, ISO/IEC, 15948.

[SEC] Standards for Efficient Cryptography: SEC 2: Recommended Elliptic Curve Domain Parameters, Version 1, September

2000.

[SHS] National Institute of Standards and Technology, Secure Hash Standard, FIPS 180-2, August 2002.

[SMIME] Ramsdell, B., Turner, S., Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.2 Message

Specification, RFC 5751, January 2010.

[SMTP] Klensin, J., Simple Mail Transfer Protocol, RFC 5321, October 2008.

[SNV-CURRENCY] Swiss Association for Standardization, Currency Code Registry, January 2015.

[SPARROW] Sparrow, E., Secure Email.

[SRV] Gulbrandsen, A., Vixie, P., Esibov, L., A DNS RR for specifying the location of services (DNS SRV), RFC 2782,

February 2000.

[TCP] Postel, J., Transmission Control Protocol, RFC 793, September 1981.

[TLS] Dierks, T., Rescorla, E., The Transport Layer Security (TLS) Protocol, Version 1.2, RFC 5246, October 2008.

[TLS-ECDHE] Rescorla, E., TLS Elliptic Curve Cipher Suites with SHA-256/384 and AES Galois Counter Mode (GCM), RFC

5289, August 2008.

[TLS-SNI] Blake-Wilson, S. et al., Transport Layer Security (TLS) Extensions, RFC 3546, June 2003.

[TXT] Rosenbaum, R., Using the domain name system to store arbitrary string attributes, RFC 1464, May 1993.

[XMPP] Saint-Andre, P., Extensible Messaging and Presence Protocol (XMPP): Core, RFC 6120, March 2011.

Saint-Andre, P., Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence, RFC 6121,

March 2011.

[XMPP-CHAT] Saint-Andre, P., XEP-0045: Multi-User Chat, February 2012.

[XMPP-OTR] Goldberg, I., Borisov, N., Off-the-Record Messaging Protocol version 3, September 2012.

 131

APPENDIX A: DATA TYPE IDENTIFIERS

Magic Number Label

1215 User Signet Signing Request

1776 Organizational Signet

1789 User Signet

1952 Organizational Private Keys

2013 User Private Keys

Symbol Name Website
BLK Blackcoin https://www.blackcoin.co/
BTC Bitcoin https://bitcoin.org/
DRK Darkcoin https://www.darkcoin.io/
LTC Litecoin https://litecoin.org/
PPC Peercoin http://www.peercoin.net/
STR Stellar https://www.stellar.org/
XMR Monero https://monero.cc/
XRP Ripple https://ripple.com/currency/

132

APPENDIX B: COMMON ENCODINGS

BASE64URL ENCODING

This document represents encodes binary data using the base64 encoding scheme defined in RFC 4648, with the URL

and filename safe character set defined in Section 5, and known as base64url. In addition to the standard base64url

conversion, all trailing pad characters, line breaks, white space, and other non-printable control characters should be

removed, as permitted by Section 3.2. [BASE]

[BASE] Josefsson, S., The Base16, Base32, and Base64 Data Encodings, RFC 4648, October 2006.

NOTES ON IMPLEMENTING BASE64URL ENCODING WITHOUT PADDING

This section was adapted from draft-ietf-jose-json-web-signature, Appendix C.

[JWS] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Signature (JWS)", draft-ietf-jose-json-web-signature

(work in progress), March 2015.

This section describes how to implement the base64url encoding and decoding functions without padding based upon

standard base64 encoding and decoding functions that do use padding. To be concrete, example code written in C# is

provided showing how to convert between standard base64 into the base64url encoding. These functions should provide

an adequate template for implementations in other languages.

To encode binary octets into a base64url string:

static string base64url_encode (byte [] arg) {

 // Encode the bytes into a normal base64 string.
 string s = Convert.ToBase64String(arg);

 // Remove the padding.
 s = s.Split('=')[0];

 // Swap ‘+‘ (plus) with ‘-‘ (minus).
 s = s.Replace('+', '-');

 // Swap ‘/‘ (slash) with ‘_‘ (underscore).
 s = s.Replace('/', '_');

 return s;

}

To decode a base64url string back into an array of binary octets:

static byte [] base64url_decode (string s) {

 // Swap ‘-‘ (minus) with ‘+‘ (plus).
 s = s.Replace('-', '+');

 // Swap ‘_‘ (underscore) with ‘/‘ (slash).

 133

 s = s.Replace('_', '/');

 // Determine whether padding should appended.
 switch (s.Length % 4) {

 case 3:
 s += "=";
 break;

 case 2:
 s += "==";
 break;

 case 0:
 break;

 default:
 throw new System.Exception("Invalid base64url string.");

 }

 // Finally, convert the string using the standard base64 decoder.
 return Convert.FromBase64String(s);

}

As per the example code above, the number of '=' padding characters that needs to be added to the end of a base64url

encoded string without padding to turn it into one with padding is a deterministic function of the length of the encoded

string. Specifically, if the length mod 4 is 0, no padding is added; if the length mod 4 is 2, two '=' padding characters are

added; if the length mod 4 is 3, one '=' padding character is added; if the length mod 4 is 1, the input is malformed.

The following octet sequence, expressed in hexadecimal form:

0x03ecffe0c1

Results in the following string after being converted into the base64url format:

A-z_4ME

MULTIPRECISION INTEGERS

Multiprecision integers (also called MPIs) are unsigned integers used to hold large integers such as the ones used in

cryptographic calculations.

An MPI consists of two pieces: a two-octet scalar that is the length of the MPI in bits followed by a string of octets that

contain the actual integer.

These octets form a big-endian number; a big-endian number can be made into an MPI by prefixing it with the

appropriate length.

Examples (all numbers are in hexadecimal):

134

The string of octets [00 01 01] forms an MPI with the value 1. The string [00 09 01 FF] forms an MPI with the value of

511.

Additional rules:

The size of an MPI is ((MPI.length + 7) / 8) + 2 octets.

The length field of an MPI describes the length starting from its most significant non-zero bit. Thus, the MPI [00 02 01] is

not formed correctly. It should be [00 01 01].

Unused bits of an MPI MUST be zero.

Also note that when an MPI is encrypted, the length refers to the plaintext MPI. It may be ill-formed in its ciphertext.

RADIX-64 CONVERSIONS

As stated in the introduction, OpenPGP's underlying native representation for objects is a stream of arbitrary octets, and

some systems desire these objects to be immune to damage caused by character set translation, data conversions, etc.

In principle, any printable encoding scheme that met the requirements of the unsafe channel would suffice, since it

would not change the underlying binary bit streams of the native OpenPGP data structures. The OpenPGP standard

specifies one such printable encoding scheme to ensure interoperability.

OpenPGP's Radix-64 encoding is composed of two parts: a base64 encoding of the binary data and a checksum. The

base64 encoding is identical to the MIME base64 content-transfer-encoding [RFC2045].

The checksum is a 24-bit Cyclic Redundancy Check (CRC) converted to four characters of radix-64 encoding by the same

MIME base64 transformation, preceded by an equal sign (=). The CRC is computed by using the generator 0x864CFB and

an initialization of 0xB704CE. The accumulation is done on the data before it is converted to radix-64, rather than on the

converted data. A sample implementation of this algorithm is in the next section.

The checksum with its leading equal sign MAY appear on the first line after the base64 encoded data.

Rationale for CRC-24: The size of 24 bits fits evenly into printable base64. The nonzero initialization can detect more

errors than a zero initialization.

An Implementation of the CRC-24 in "C"

#define CRC24_INIT 0xB704CEL
#define CRC24_POLY 0x1864CFBL
typedef long crc24;
crc24 crc_octets(unsigned char *octets, size_t len)
{
 crc24 crc = CRC24_INIT;
 int i;
 while (len--) {
 crc ^= (*octets++) << 16;
 for (i = 0; i < 8; i++) {
 crc <<= 1;

 135

 if (crc & 0x1000000) crc ^= CRC24_POLY;
 }
 }
 return crc & 0xFFFFFFL;
}

ENCODING BINARY IN RADIX-64

The encoding process represents 24-bit groups of input bits as output strings of 4 encoded characters. Proceeding from

left to right, a 24-bit input group is formed by concatenating three 8-bit input groups. These 24 bits are then treated as

four concatenated 6-bit groups, each of which is translated into a single digit in the Radix-64 alphabet. When encoding a

bit stream with the Radix-64 encoding, the bit stream must be presumed to be ordered with the most significant bit first.

That is, the first bit in the stream will be the high-order bit in the first 8-bit octet, and the eighth bit will be the low-order

bit in the first 8-bit octet, and so on.

 +--first octet--+-second octet--+--third octet--+
 |7 6 5 4 3 2 1 0|7 6 5 4 3 2 1 0|7 6 5 4 3 2 1 0|
 +-----------+---+-------+-------+---+-----------+
 |5 4 3 2 1 0|5 4 3 2 1 0|5 4 3 2 1 0|5 4 3 2 1 0|
 +--1.index--+--2.index--+--3.index--+--4.index--+

Each 6-bit group is used as an index into an array of 64 printable characters from the table below. The character

referenced by the index is placed in the output string.

 Value Encoding Value Encoding Value Encoding Value Encoding
 0 A 17 R 34 i 51 z
 1 B 18 S 35 j 52 0
 2 C 19 T 36 k 53 1
 3 D 20 U 37 l 54 2
 4 E 21 V 38 m 55 3
 5 F 22 W 39 n 56 4
 6 G 23 X 40 o 57 5
 7 H 24 Y 41 p 58 6
 8 I 25 Z 42 q 59 7
 9 J 26 a 43 r 60 8
 10 K 27 b 44 s 61 9
 11 L 28 c 45 t 62 +
 12 M 29 d 46 u 63 /
 13 N 30 e 47 v
 14 O 31 f 48 w (pad) =
 15 P 32 g 49 x
 16 Q 33 h 50 y

The encoded output stream must be represented in lines of no more than 76 characters each.

Special processing is performed if fewer than 24 bits are available at the end of the data being encoded. There are three

possibilities:

136

1. The last data group has 24 bits (3 octets). No special processing is needed.

2. The last data group has 16 bits (2 octets). The first two 6-bit groups are processed as above. The third

(incomplete) data group has two zero-value bits added to it, and is processed as above. A pad character (=) is

added to the output.

3. The last data group has 8 bits (1 octet). The first 6-bit group is processed as above. The second (incomplete)

data group has four zero-value bits added to it, and is processed as above. Two pad characters (=) are added to

the output.

DECODING RADIX-64

In Radix-64 data, characters other than those in the table, line breaks, and other white space probably indicate a

transmission error, about which a warning message or even a message rejection might be appropriate under some

circumstances. Decoding software must ignore all white space.

Because it is used only for padding at the end of the data, the occurrence of any "=" characters may be taken as

evidence that the end of the data has been reached (without truncation in transit). No such assurance is possible,

however, when the number of octets transmitted was a multiple of three and no "=" characters are present.

EDDSA POINT FORMAT

The EdDSA algorithm defines a specific point compression format. To indicate the use of this compression format and to

make sure the key can be represented in the Multiprecision Integer (MPI) format of [RFC4880] the octet string specifying

the point is prefixed with the octet 0x40. This encoding is an extension of the encoding given in [RFC6637] which uses

0x04 to indicate an uncompressed point.

For example, the length of a public key for the curve Ed25519 is 263 bit: 7 bit to represent the 0x40 prefix octet and 32

octets for the native value of the public key.

TEST VECTORS

To help implementing this specification a non-normative example is given.

SAMPLE KEY

The secret key used for this example is (which holds K and Q):

Kprv: 0x1a8b1ff05ded48e18bf50166c664ab023ea70003d78d9e41f5758a91d850f8d2
Qpub: 0x3f098994bdd916ed4053197934e4a87c80733a1280d62f8010992e43ee3b2406

The entire public key encoded in the MPI format is and converted to hex is:

 137

Qmpi:
0x0107403f098994bdd916ed4053197934e4a87c80733a1280d62f8010992e43ee3b240
6

SIGNATURE ENCODING

The MPIs representing the R and S value are encoded as MPIs. Note that the compressed version of R and S as specified

for EdDSA ([ED25519]) is used.

The signature is created using the sample key over the input data:

d: 0xf6220a3f757814f4c2176ffbb68b00249cd4ccdc059c4b34ad871f30b1740280

Which is fed into the EdDSA signature function and yields this signature:

R: 56f90cca98e2102637bd983fdb16c131dfd27ed82bf4dde5606e0d756aed3366
S: d09c4fa11527f038e0f57f2201d82f2ea2c9033265fa6ceb489e854bae61b404

The MPI encoding rules require that the value of S needs to be prefixed with a 0x00 octet. The entire signature is:

0x010056f90cca98e2102637bd983fdb16c131dfd27ed82bf4dde5606e0d756aed33660
100d09c4fa11527f038e0f57f2201d82f2ea2c9033265fa6ceb489e854bae61b404

138

APPENDIX C: WHAT NEEDS DOING

Short Authenticating String section

Consolidate the language on signing and encryption key encoding in the signet specification.

Possibly reorganize the field types into: fixed, var(x) (aka variable length value), and var(1)/var(2) (aka variable length

name and variable length value, aka undefined fields).

The different types of textual informational fields. Literals, semicolon delimited and identifier colon value fields.

Figure out if any additional rules need to be supplied for the identifier field beyond using utf-8 in Normalization Form C.

Provide a list of valid error codes for the DMTP commands.

Create the ABNF.

Consolidate the various encodings into its own chapter, so the information can be provided once. This means providing id

strings and details for the PEM format, and then write up the translation rules for the JSON forms.

Write up the details for the optional pipelining and binary DMTP extensions.

Figure out if we should use radix-64 for everything, or stick with modified base64 (b64 w/o padding). Also consider Z85.

Finish describing the d/mime format. This means chunk descriptions. Tree and bounce signature descriptions are

important, and figure out if we want to create a structure chunk in the meta section.

Finish writing the details for aux/alt encryption chunks. Make it clear that aux/alt must not be used on envelope, meta,

or signature chunks.

Create a section on how private keys should encoded, encrypted and then stored.

Consolidate and formalize the signet validation rules into a checklist/binary decision tree. Including the rules regarding a

primary, plus pre-authenticated source for automated trust acceptance. Guidelines for handling single source signets

based on the different account mode. Cover the rules for validating a signet structure, independent of the content.

Ensuring no reserved fields identifiers have been used. That all of the defined fields appear in numerical order. Then

cover the required content validation rules. Check the text informational fields to ensure they only contain valid utf-8

codepoints. Ensure the encryption keys represent valid points on the signing or encryption curves. Rules for validating

the chain of custody. Rules for the identity field comparisons when retrieving a signet. Trimming excessively long text

fields.

Add details on compressing/decompressing Ed25519 public signing keys.

Provide a standardized list of properties for signet fields, something like: Identifier (type number), Label, Disposition,

Type (binary or text), Format (applicable to text fields only, with the values: literal, semicolon delimited values, identified

value pairs, and semicolon delimited identified value pairs), Length Limit, Regular Expression Validator (applicable to text

 139

fields only), Validation Policy (trim, ignore, invalidate info fields only, invalidate entire signet), History (Defined by

Revision 1, Updated by Revision 2).

Provide a standardized list of properties for message chunks.

For org signets, the services field doesn’t define a list of recognizable identifiers, nor does it cite one. No

comprehensive/IANA/standards body list of SRV identifiers currently exists, although IANA does provide a protocol

service name registry.

The supported codecs list needs a collection of defined identifiers, for example, GIF, JPG, BPG, TIFF, BMP, vector formats,

SVG, SVGZ, audio codecs/containers, MP3, WAV, AAC, WMA, FLAC, and video codecs/containers, AVI, MP4, 3GP, FLV,

MKV, WMV, DIVX, WEBM/

